Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content
2.1.1. Olive Oil Varities
2.1.2. Olive Oil Ripening Flavor
2.1.3. Fruitiness Intensity
2.1.4. Sensory Characteristics
2.2. Quality Factors Harmony, Fruitiness, Bitterness, and Pungency
2.3. Principal Component Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Plant Material
3.3. Sample Preparation
Plant Material
3.4. Quantification of Chemical Components Using LC-DAD/ESI-MS
3.5. Characterization of Chemical Components Using Folin-Ciocalteu Assay
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Table 1: Production (1000 tonnes). In World Olive Oil Figures; International Olive Oil Council: Madrid, Spain, 2018.
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, F.; Bulló, M.; Barrubés, L. Mediterranean Diet and Cardiovascular Disease Prevention: What Do We Know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Farinetti, A.; Zurlo, V.; Manenti, A.; Coppi, F.; Mattioli, A.V. Mediterranean diet and colorectal cancer: A systematic review. Nutrition 2017, 43, 83–88. [Google Scholar] [CrossRef]
- Eguaras, S.; Toledo, E.; Buil-Cosiales, P.; Salas-Salvadó, J.; Corella, D.; Gutiérrez-Bedmar, M.; Santos-Lozano, J.; Arós, F.; Fiol, M.; Fitó, M.; et al. Does the Mediterranean diet counteract the adverse effects of abdominal adiposity? Nutr. Metab. Cardiovasc. Dis. 2015, 25, 569–574. [Google Scholar] [CrossRef]
- Boskou, D.; Blekas, G.; Tsimidou, M. Olive Oil Composition. Olive Oil 2006, 41–72. [Google Scholar]
- Bayram, B.; Esatbeyoglu, T.; Schulze, N.; Özçelik, B.; Frank, J.; Rimbach, G. Comprehensive Analysis of Polyphenols in 55 Extra Virgin Olive Oils by HPLC-ECD and Their Correlation with Antioxidant Activities. Food. Hum. Nutr. 2012, 67, 326–336. [Google Scholar] [CrossRef]
- Tsimidou, M.; Papadopoulos, G.; Boskou, D. Phenolic compounds and stability of virgin olive oil—Part I. Food Chem. 1992, 45, 141–144. [Google Scholar] [CrossRef]
- Favati, F.; Condelli, N.; Galgano, F.; Caruso, M.C. Extra virgin olive oil bitterness evaluation by sensory and chemical analyses. Food Chem. 2013, 139, 949–954. [Google Scholar] [CrossRef]
- Fogliano, V.; Sacchi, R. Oleocanthal in olive oil: Between myth and reality. Mol. Nutr. Food Res. 2006, 50, 5–6. [Google Scholar] [CrossRef]
- Siliani, S.; Mattei, A.; Innocenti, L.B.; Zanoni, B. Bitter taste and phenolic compounds in extra virgin olive oil: An empirical relationship. J. Food Qual. 2006, 29, 431–441. [Google Scholar] [CrossRef]
- Gawel, R.; Rogers, D.A. The relationship between total phenol concentration and the perceived style of extra virgin olive oil. Grasas y Aceites 2009, 60, 134–138. [Google Scholar] [CrossRef]
- Boskou, D.; Blekas, G.; Tsimidou, M. Phenolic compounds in olive oil and olives. Curr. Top. Nutraceut. Res. 2005, 3, 125–136. [Google Scholar]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef]
- Charoenprasert, S.; Mitchell, A. Factors Influencing Phenolic Compounds in Table Olives (Olea europaea). J. Agric. Food Chem. 2012, 60, 7081–7095. [Google Scholar] [CrossRef]
- Gutierrez-Rosales, F.; Rios, J.J.; Gómez-Rey, M.L. Main polyphenols in the bitter taste of virgin olive oil. Structural confirmation by on-line HPLC electrospray ionisation mass spectrometry. J. Agric. Food Chem. 2003, 51, 6021–6025. [Google Scholar] [CrossRef] [PubMed]
- Andrewes, P.; Busch, J.L.H.C.; De Joode, T.; Groenewegen, A.; Alexandre, H. Sensory Properties of Virgin Olive Oil Polyphenols: Identification of Deacetoxy-ligstroside Aglycon as a Key Contributor to Pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 1924. E. Parliament (Ed.). Available online: https://eur-lex.europa.eu/eli/reg/2006/1924/oj#document1 (accessed on 28 May 2019).
- Caporaso, N.; Savarese, M.; Paduano, A.; Guidone, G.; De Marco, E.; Sacchi, R. Nutritional quality assessment of extra virgin olive oil from the Italian retail market: Do natural antioxidants satisfy EFSA health claims? J. Food Compos. Anal. 2015, 40, 154–162. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspect of production that affect their occurence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Angerosa, F. Virgin olive oil odour notes: Their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem. 2000, 68, 283–287. [Google Scholar] [CrossRef]
- Agbiolab. Inc. Polyphenols and Antioxidants in Olive Oil; Agbiolab. Inc.: Durham, CA, USA, 2014. [Google Scholar]
- Brühl, L.; Matthäus, B.; Fehling, E.; Wiege, B.; Lehmann, B.; Luftmann, H.; Bergander, K.; Quiroga, K.; Scheipers, A.; Frank, O.; et al. Identification of Bitter Off-Taste Compounds in the Stored Cold Pressed Linseed Oil. J. Agric. Food Chem. 2007, 55, 7864–7868. [Google Scholar] [CrossRef]
- Wani, T.A.; Masoodi, F.; Gani, A.; Baba, W.N.; Rahmanian, N.; Wani, I.A.; Ahmad, M. Olive oil and its principal bioactive compound: Hydroxytyrosol—A review of the recent literature. Trends Food Sci. Technol. 2018, 77, 77–90. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A.; Battino, M. From Olive Fruits to Olive Oil: Phenolic Compound Transfer in Six Different Olive Cultivars Grown under the Same Agronomical Conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef]
- Brenes, M.; García, A.; Rios, J.J.; Garrido, A. Use of 1-acetoxypinoresinol to authenticate Picual olive oils. Int. J. Food Sci. Technol. 2002, 37, 615–625. [Google Scholar] [CrossRef]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Toschi, T.G. Effect of Olive Ripening Degree on the Oxidative Stability and Organoleptic Properties of Cv. Nostrana di Brisighella Extra Virgin Olive Oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Castrejón, A.D.R.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem. 2008, 109, 564–572. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Domínguez-Perles, R.; Gironés-Vilaplana, A.; Carvalho, T.; Machado, N.; Barros, A. Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade Alessandra. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Artajo, L.-S.; Romero, M.-P.; Suárez, M.; Motilva, M.-J. Partition of phenolic compounds during the virgin olive oil industrial extraction process. Eur. Food Res. Technol. 2007, 225, 617–625. [Google Scholar] [CrossRef]
- Ghanbari, R.; Anwar, F.; Alkharfy, K.M.; Gilani, A.-H.; Saari, N. Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review. Int. J. Mol. Sci. 2012, 13, 3291–3340. [Google Scholar] [CrossRef]
- Seward, R.; Stacey, C. Markers for Spanish Olive Oil Cultivars–Statistical Analysis of Polar Compounds from LC/MS Results. OILS 6 2014, 1–6. [Google Scholar]
- Bongartz, A.; Oberg, D. Sensory Evaluation of Extra Virgin Olive Oil (EVOO) Extended to Include the Quality-Factor “Harmony”. J. Agric. Sci. Technol. 2011, 1, 422–435. [Google Scholar]
- Farrés-Cebrián, M.; Seró, R.; Saurina, J.; Núñez, O. HPLC-UV Polyphenolic Profiles in the Classification of Olive Oils and Other Vegetable Oils via Principal Component Analysis. Separations 2016, 3, 33. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Pedan, V.; Rohn, S.; Holinger, M.; Hühn, T.; Chetschik, I. Bioactive Compound Fingerprint Analysis of Aged Raw Pu’er Tea and Young Ripened Pu’er Tea. Molecules 2018, 23, 1931. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2017. Available online: https://www.R-project.org/ (accessed on 26 May 2019).
- Roselli, L.; Clodoveo, M.L.; Corbo, F.; De Gennaro, B. Are health claims a useful tool to segment the category of extra-virgin olive oil? Threats and opportunities for the Italian olive oil supply chain. Trends Food Sci. Technol. 2017, 68, 176–181. [Google Scholar] [CrossRef]
Sample Availability: Samples of compounds are available from the authors. |
Phenolic Compounds [mg/kg] | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|
TPC | 52.2 | 135.2 | 166.7 | 207.7 | 315.2 |
Hydroxytyrosol | 0.6 | 4.9 | 7.2 | 11.4 | 53.7 |
Hydroxybenzoic acid | 0.02 | 0.04 | 0.05 | 0.07 | 0.2 |
Tyrosol | 0.2 | 0.6 | 0.8 | 1.2 | 6.6 |
Vanillic acid | 0.2 | 0.4 | 0.49 | 0.7 | 4.4 |
Oleacein | 1.5 | 48.5 | 83.6 | 118.1 | 239.9 |
Oleocanthal | 0.55 | 3.72 | 4.74 | 6.52 | 35.3 |
Oleuropein | 1.7 | 12.1 | 21.9 | 34.40 | 82.5 |
p-HPEA-EA | 0.1 | 1.2 | 1.8 | 2.8 | 8.1 |
Hydroxytyrosol acetate | 0.00 | 0.03 | 0.07 | 0.19 | 2.09 |
Oleoside 11-methyl ester | 0.9 | 8.4 | 11.9 | 20.2 | 92.2 |
Oleuropein | 1.18 | 3.88 | 7.05 | 10.18 | 37.8 |
Oleocanthal | 11.8 | 97.4 | 155.8 | 208.9 | 358.2 |
Coumaric acid | 0.04 | 0.15 | 0.29 | 0.53 | 2.54 |
Ferulic acid | 0.00 | 0.01 | 0.02 | 0.04 | 0.48 |
Luteolin-7-O-glucoside | 0.01 | 0.02 | 0.02 | 0.03 | 0.18 |
Apigenin-7-O-glucoside | 0.01 | 0.02 | 0.02 | 0.03 | 0.15 |
Luteolin | 0.5 | 1.6 | 2.5 | 3.7 | 9.4 |
Apigenin | 0.1 | 0.7 | 1.0 | 1.5 | 8.2 |
Pinoresinol | 1.1 | 3.1 | 4.2 | 5.6 | 11.9 |
1-Acetoxypinoresinol | 4.7 | 21.6 | 25.8 | 31.7 | 90.6 |
No. | Identification | RT [min] | Calibration Curve | UV [nm] | LOD [mg/L] | LOQ [mg/L] | Formula | MW [g/mol] | [M + H]+ [m/z] | Major Fragments [M + H]+ | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | (+)-Pinoresinol | 36.2 | y = 24767x + 53.46 | 210 | 7.0 | 21.3 | C20H22O6 | 358.38 | 359.15 | 341.0 | 175.0 |
2 | Oleoside 11-methyl ester | 18.7 | y = 5698.6x + 39.59 | 240 | 14.9 | 45.1 | C17H24O11 | 404.37 | 405.14 | 165.1 | 151.1 |
3 | Oleuropein | 30.1 | y = 4259.4x − 21.44 | 240 | 9.6 | 29.0 | C25H32O13 | 540.51 | 541.19 | 137.1 | 360.9 |
4 | Oleocanthal | 39.6 | y = 4422.9x + 22.99 | 240 | 13.2 | 40.0 | C17H20O5 | 304.34 | 305.14 | 345.1 | 121.1 |
5 | Hydroxytyrosol | 10.2 | y = 3434.8x + 0.23 | 275 | 2.3 | 6.9 | C8H10O3 | 154.17 | 155.07 | 137.1 | 119.1 |
6 | Hydroxybenzoic acid | 12.9 | y = 12683x − 6.11 | 275 | 15.4 | 46.6 | C7H6O3 | 138.12 | 139.04 | - | - |
7 | Tyrosol | 14.0 | y = 31878x − 71.75 | 275 | 8.1 | 24.5 | C8H10O2 | 138.16 | 139.07 | 121.1 | 103.1 |
8 | Vanillic acid | 15.5 | y = 2266.5x − 13.72 | 275 | 28.7 | 87.0 | C8H8O4 | 168.15 | 169.05 | 125.1 | 110.0 |
9 | Hydroxytyrosol acetate | 25.3 | y = 25238x + 97.11 | 275 | 4.7 | 14.2 | C10H12O4 | 196.20 | 197.08 | 137.1 | 119.1 |
10 | p-Coumaric acid | 20.7 | y = 19893x + 84.60 | 320 | 10.9 | 32.9 | C9H8O3 | 164.16 | 165.05 | 147.0 | 119.1 |
11 | trans-Ferulic acid | 21.6 | y = 16107x + 69.68 | 320 | 10.3 | 31.4 | C10H10O4 | 194.18 | 195.06 | 177.0 | 195.1 |
12 | Luteolin-7-O-glucoside | 21.8 | y = 12204x + 24.43 | 360 | 7.4 | 22.4 | C21H20O11 | 448.38 | 449.11 | 449.0 | - |
13 | Apigenin-7-O-glucoside | 24.5 | y = 8639x + 29.64 | 360 | 8.8 | 26.5 | C21H20O10 | 432.38 | 433.11 | 433.1 | 271.1 |
14 | Luteolin | 31.5 | y = 17000x + 49.81 | 360 | 8.0 | 24.2 | C15H10O6 | 286.24 | 287.06 | 287.0 | - |
15 | Apigenin | 37.4 | y = 15837x + 134.01 | 360 | 16.6 | 50.3 | C15H10O5 | 270.24 | 271.06 | 271.0 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedan, V.; Popp, M.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules 2019, 24, 2041. https://doi.org/10.3390/molecules24112041
Pedan V, Popp M, Rohn S, Nyfeler M, Bongartz A. Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules. 2019; 24(11):2041. https://doi.org/10.3390/molecules24112041
Chicago/Turabian StylePedan, Vasilisa, Martin Popp, Sascha Rohn, Matthias Nyfeler, and Annette Bongartz. 2019. "Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil" Molecules 24, no. 11: 2041. https://doi.org/10.3390/molecules24112041
APA StylePedan, V., Popp, M., Rohn, S., Nyfeler, M., & Bongartz, A. (2019). Characterization of Phenolic Compounds and Their Contribution to Sensory Properties of Olive Oil. Molecules, 24(11), 2041. https://doi.org/10.3390/molecules24112041