Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drug Loading and Encapsulation Efficiency
2.2. Drug Release Profile
2.3. Bioactivity of Formulated Nanoparticles
3. Materials and Methods
3.1. Materials
3.2. Preparation of PLA Nanoparticles
3.3. Characterization of Nanoparticles
3.4. Morphology of Nanoparticles
3.5. Quantification of Encapsulated STLs by HPLC
3.6. Drug Release Profile
3.7. Bioactivity Assays
3.7.1. Trypanosoma Brucei Rhodesiense
3.7.2. Cytotoxicity
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African trypanosomiasis. Lancet 2017, 390, 2397–2409. [Google Scholar] [CrossRef]
- Nardella, F.; Gall, J.; Bourjot, M.; Weniger, B.; Vonthron-Sénécheau, C. Antileishmanial and antitrypanosomal activities of flavonoids. In Natural Antimicrobial Agents. Sustainable Development and Biodiversity; Mérillon, J.-M., Rivière, C., Eds.; Springer: Basel, Switzerland, 2018; ISBN 9783319670454. [Google Scholar]
- Field, M.C.; Horn, D.; Fairlamb, A.H.; Ferguson, M.A.J.; Gray, D.W.; Read, K.D.; De Rycker, M.; Torrie, L.S.; Wyatt, P.G.; Wyllie, S.; et al. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need. Nat. Rev. Microbiol. 2017, 15, 217–231. [Google Scholar] [CrossRef] [PubMed]
- DNDi Fexinidazole (HAT)—DNDi. Available online: https://www.dndi.org/diseases-projects/portfolio/fexinidazole/ (accessed on 8 January 2019).
- Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Nogueira, M.S.; Trossini, G.H.G.; Schmidt, T.J.; Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Nogueira, M.S.; et al. Complementary Quantitative Structure–Activity Relationship Models for the Antitrypanosomal Activity of Sesquiterpene Lactones. Int. J. Mol. Sci. 2018, 19, 3721. [Google Scholar] [CrossRef] [PubMed]
- Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal Sesquiterpene Lactones and Other Constituents from Tarchonanthus camphoratus and Schkuhria pinnata. J. Nat. Prod. 2018, 81, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Sesquiterpene lactones from Vernonia cinerascens Sch. Bip. and their in vitro antitrypanosomal activity. Molecules 2018, 23, 248. [Google Scholar] [CrossRef] [PubMed]
- Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Anti-trypanosomatid elemanolide sesquiterpene lactones from Vernonia lasiopus O. Hoffm. Molecules 2017, 22, 597. [Google Scholar] [CrossRef] [PubMed]
- Letchford, K.; Burt, H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 2007, 65, 259–269. [Google Scholar] [CrossRef]
- Anu Mary Ealia, S.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar] [CrossRef]
- Ghasemi, R.; Abdollahi, M.; Zadeh, E.E.; Khodabakhshi, K.; Badeli, A.; Bagheri, H.; Hosseinkhani, S. mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Sci. Rep. 2018, 8, 9854. [Google Scholar] [CrossRef]
- Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482. [Google Scholar] [CrossRef]
- Palma, E.; Pasqua, A.; Gagliardi, A.; Britti, D.; Fresta, M.; Cosco, D. Antileishmanial activity of amphotericin B-loaded-PLGA nanoparticles: An overview. Materials (Basel). 2018, 11, 1167. [Google Scholar] [CrossRef] [PubMed]
- Pund, S.; Joshi, A. Nanoarchitectures for Neglected Tropical Protozoal Diseases: Challenges and State of the Art; Grumezescu, A.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780323527279. [Google Scholar]
- Arias, J.L.; Unciti-Broceta, J.D.; Maceira, J.; Del Castillo, T.; Hernández-Quero, J.; Magez, S.; Soriano, M.; García-Salcedo, J.A. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. J. Control. Release 2015, 197, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unciti-Broceta, J.D.; Arias, J.L.; Maceira, J.; Soriano, M.; Ortiz-González, M.; Hernández-Quero, J.; Muñóz-Torres, M.; De Koning Harry, P.; Magez, S.; Garcia-Salcedo, J.A. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015, 11, e1004942. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J.; Da Costa, F.B.F.; Lopes, N.P.N.; Kaiser, M.; Brun, R. In Silico prediction and experimental evaluation of furanoheliangolide sesquiterpene lactones as potent agents against Trypanosoma brucei rhodesiense. Antimicrob. Agents Chemother. 2014, 58, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Schomburg, C.; Schuehly, W.; Da Costa, F.B.; Klempnauer, K.H.; Schmidt, T.J. Natural sesquiterpene lactones as inhibitors of Myb-dependent gene expression: Structure-activity relationships. Eur. J. Med. Chem. 2013, 63, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Raudszus, B.; Mulac, D.; Langer, K. A new preparation strategy for surface modified PLA nanoparticles to enhance uptake by endothelial cells. Int. J. Pharm. 2018, 536, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Hans, M.L.; Lowman, A.M. Nanoparticles for drug delivery. In Nanomaterials Handbook; Taylor & Francis: Philadelphia, PA, USA, 2006; p. Ch.23. [Google Scholar]
- Kulkarni, R.K.; Pani, K.C.; Neuman, C.; Leonard, F. Polylactic acid for surgical implants. Arch. Surg. 1966, 93, 839–843. [Google Scholar] [CrossRef]
- Betancourt, T.; Brown, B.; Brannon-Peppas, L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: Preparation, characterization and in vitro evaluation. Nanomedicine (Lond) 2007, 2, 219–232. [Google Scholar] [CrossRef]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 2010, 385, 113–142. [Google Scholar] [CrossRef]
- Watkins, R.; Wu, L.; Zhang, C.; Davis, R.M.; Xu, B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomed. 2015, 10, 6055–6074. [Google Scholar] [CrossRef]
- ICH. ICH harmonised tripartite guideline validation of analytical procedures: Text and methodology Q2(R1) Guideline on Validation of Analytical Procedures: Methodology developed to complement the Parent Guideline. In Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Chicago, IL, USA, 5–10 November 2005; ICH: Geneva, Switzerland, 2005. [Google Scholar]
- Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1 and 2 are available from the authors. |
Formulation | Particle Diameter (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) | Encapsulation Efficiency (%) | Drug Load (%) |
---|---|---|---|---|---|
PLA-NP | 208.9 ± 10.5 | 0.05 ± 0.02 | −36.1± 5.4 | - | - |
α-Santonin | 202.3 ± 8.2 | 0.03 ± 0.01 | −26.3 ± 7.8 | 94.6 ± 2.2 | 42.6 ± 8.2 |
Arglabin | 220.3 ± 12.8 | 0.02 ± 0.00 | −35.3 ± 5.6 | 78.1 ± 7.4 | 7.5 ± 1.3 |
Schkuhrin II | 219.5 ± 9.9 | 0.05 ± 0.01 | −35.4 ± 4.9 | 76.8 ± 3.9 | 2.5 ± 0.2 |
Vernolepin | 216.9 ± 16.1 | 0.10 ± 0.01 | −35.3 ± 6.7 | 60.7 ± 8.9 | 0.5 ± 0.3 |
Eucannabinolide | 226.4 ± 10.2 | 0.02 ± 0.00 | −33.5 ± 5.3 | 78.9 ± 6.3 | 2.5 ± 0.7 |
STL Loaded NPs Tbr (µg/mL) | Equivalent Free STL Tbr (µM) | Free STL Tbr (µM) | NPs Cytotoxicity (µg/mL) | Free STL Cytotoxicity (µg/mL) | |
---|---|---|---|---|---|
α-Santonin | >50 c | 234.50 a | >50 c | >50 c | |
Arglabin | 12.15 ± 3.68 | 3.67 ± 0.28 | 2.52 ± 0.42 b | 40.33 ± 10.46 | 1.52 ± 0.68 |
Schkuhrin II | >100 c | 0.82 ± 0.17 b | >100 c | 5.24 ± 0.56 | |
Vernolepin | 61.30 ± 3.65 | 1.11 ± 0.02 | 0.19 ± 0.04 b | >100 c | 0.74 ± 0.05 |
Eucannabinolide | 55.80 ± 4.68 | 3.32 ± 0.12 | 1.14 ± 0.08 b | >100 c | 3.28 ± 0.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimani, N.M.; Backhaus, S.; Matasyoh, J.C.; Kaiser, M.; Herrmann, F.C.; Schmidt, T.J.; Langer, K. Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity. Molecules 2019, 24, 2110. https://doi.org/10.3390/molecules24112110
Kimani NM, Backhaus S, Matasyoh JC, Kaiser M, Herrmann FC, Schmidt TJ, Langer K. Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity. Molecules. 2019; 24(11):2110. https://doi.org/10.3390/molecules24112110
Chicago/Turabian StyleKimani, Njogu M., Solveig Backhaus, Josphat C. Matasyoh, Marcel Kaiser, Fabian C. Herrmann, Thomas J. Schmidt, and Klaus Langer. 2019. "Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity" Molecules 24, no. 11: 2110. https://doi.org/10.3390/molecules24112110
APA StyleKimani, N. M., Backhaus, S., Matasyoh, J. C., Kaiser, M., Herrmann, F. C., Schmidt, T. J., & Langer, K. (2019). Preparation of Sesquiterpene Lactone-Loaded PLA Nanoparticles and Evaluation of Their Antitrypanosomal Activity. Molecules, 24(11), 2110. https://doi.org/10.3390/molecules24112110