Inhibitory Effects of Diketopiperazines from Marine-Derived Streptomyces puniceus on the Isocitrate Lyase of Candida albicans
Abstract
:1. Introduction
2. Results
2.1. Isolation and Structural Elucidation of Diketopiperazines
2.2. ICL Inhibitory Activity and Antifungal Activity of Diketopiperazines
2.3. Inhibition of C2 Substrate Utilization
2.4. Effects of Cyclo(L-Phe-L-Val) on Growth Phenotype and icl Expression
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedure
4.2. Bacterial and Fungal Strains
4.3. Fermentation and Isolation of Diketopiperazines
4.4. ICL Inhibition Assay
4.5. In Vitro Growth Assay
4.6. Growth Phenotype and Icl Expression Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanni, P.; Giachetti, E.; Pinzauti, G.; McFadden, B.A. Comparative structure, function and regulation of isocitrate lyase, an important assimilatory enzyme. Comp. Biochem. Physiol. Part B Comp. Biochem. 1990, 95, 431–458. [Google Scholar] [CrossRef]
- Dunn, M.F.; Ramirez-Trujillo, J.A.; Hernández-Lucas, I.; Dunn, M. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 2009, 155, 3166–3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunze, M.; Pracharoenwattana, I.; Smith, S.M.; Hartig, A. A central role for the peroxisomal membrane in glyoxylate cycle function. Biochim. Biophys. Acta (BBA) Bioenergy 2006, 1763, 1441–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strijbis, K.; Distel, B. Intracellular Acetyl Unit Transport in Fungal Carbon Metabolism. Eukaryot. Cell 2010, 9, 1809–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, J.D.; Zu Bentrup, K.H.; Muñoz-Elías, E.J.; Miczak, A.; Chen, B.; Chan, W.-T.; Swenson, D.; Sacchettini, J.C.; Jacobs, W.R.; Russell, D.G.; et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000, 406, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Elías, E.J.; McKinney, J.D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 2005, 11, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.C.; Fink, G.R. The glyoxylate cycle is required for fungal virulence. Nature 2001, 412, 83–86. [Google Scholar] [CrossRef]
- Ramirez, M.A.; Lorenz, M.C. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot. Cell 2007, 6, 280–290. [Google Scholar] [CrossRef]
- Kratky, M.; Vinsova, J. Advances in Mycobacterial Isocitrate Lyase Targeting and Inhibitors. Curr. Med. Chem. 2012, 19, 6126–6137. [Google Scholar] [CrossRef]
- Greene, J.; Sheu, S.-S.; Gross, R.; Greenamyre, J.T. 3-Nitropropionic acid exacerbates N-methyl-d-aspartate toxicity in striatal culture by multiple mechanisms. Neuroscience 1998, 84, 503–510. [Google Scholar] [CrossRef]
- Ko, Y.H.; Smith, B.L.; Wang, Y.; Pomper, M.G.; Rini, D.A.; Torbenson, M.S.; Hullihen, J.; Pedersen, P.L. Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun. 2004, 324, 269–275. [Google Scholar] [CrossRef]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines from Marine Organisms. Chem. Biodivers. 2010, 7, 2809–2829. [Google Scholar] [CrossRef]
- McCleland, K.; Frost, C.; Van De Venter, M.; Du Plessis, J.; Dyason, K.; Milne, P.; Lucieto, F.; Brauns, S. An investigation into the biological activity of the selected histidine-containing diketopiperazines cyclo(His-Phe) and cyclo(His-Tyr). J. Pharm. Pharmacol. 2004, 56, 1143–1153. [Google Scholar] [CrossRef]
- Mas, V.; Falco, A.; Brocal, I.; Perez, L.; Coll, J.; Estepa, A. Identification of selective inhibitors of VHSV from biased combinatorial libraries of N,N′-disubstituted 2,5-piperazinediones. Antivir. Res. 2006, 72, 107–115. [Google Scholar] [CrossRef]
- Park, D.-K.; Lee, K.-E.; Baek, C.-H.; Kim, I.H.; Kwon, J.-H.; Lee, W.K.; Lee, K.-H.; Kim, B.-S.; Choi, S.-H.; Kim, K.-S. Cyclo(Phe-Pro) Modulates the Expression of ompU in Vibrio spp. J. Bacteriol. 2006, 188, 2214–2221. [Google Scholar] [CrossRef]
- Degrassi, G.; Aguilar, C.; Bosco, M.; Zahariev, S.; Pongor, S.; Venturi, V. Plant Growth-Promoting Pseudomonas putida WCS358 Produces and Secretes Four Cyclic Dipeptides: Cross-Talk with Quorum Sensing Bacterial Sensors. Curr. Microbiol. 2002, 45, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Mollica, A.; Macedonio, G.; Stefanucci, A.; Carradori, S.; Akdemir, A.; Angeli, A.; Supuran, C.T. Five- and Six-Membered Nitrogen-Containing Compounds as Selective Carbonic Anhydrase Activators. Molecules 2017, 22, 2178. [Google Scholar] [CrossRef]
- Yan, P.-S.; Song, Y.; Sakuno, E.; Nakajima, H.; Nakagawa, H.; Yabe, K. Cyclo(l-Leucyl-l-Prolyl) Produced by Achromobacter xylosoxidans Inhibits Aflatoxin Production by Aspergillus parasiticus. Appl. Environ. Microbiol. 2004, 70, 7466–7473. [Google Scholar] [CrossRef]
- Park, W.; Woo, J.-K.; Shin, J.; Oh, K.-B. nonG, a constituent of the nonactin biosynthetic gene cluster, regulates nocardamine synthesis in Streptomyces albus J1074. Biochem. Biophys. Res. Commun. 2017, 490, 664–669. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Ma, H.; Zhu, W. Developments around the bioactive diketopiperazines: a patent review. Expert Opin. Ther. Patents 2013, 23, 1415–1433. [Google Scholar] [CrossRef]
- Minelli, A.; Grottelli, S.; Mierla, A.; Pinnen, F.; Cacciatore, I.; Bellezza, I. Cyclo(His-Pro) exerts anti-inflammatory effects by modulating NF-κB and Nrf2 signalling. Int. J. Biochem. Cell Boil. 2012, 44, 525–535. [Google Scholar] [CrossRef]
- Faden, A.; Movsesyan, V.; Knoblach, S.; Ahmed, F.; Cernak, I. Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology 2005, 49, 410–424. [Google Scholar] [CrossRef]
- Barrow, C.J.; Sun, H.H. Spiroquinazoline, a Novel Substance P Inhibitor with a New Carbon Skeleton, Isolated from Aspergillus flavipes. J. Nat. Prod. 1994, 57, 471–476. [Google Scholar] [CrossRef]
- Huang, Q.; Tezuka, Y.; Hatanaka, Y.; Kikuchi, T.; Nishi, A.; Tubaki, K. Studies on metabolites of mycoparasitic fungi. III. New sesquiterpene alcohol from Trichoderma koningii. Chem. Pharm. Bull. 1995, 43, 1035–1038. [Google Scholar] [CrossRef]
- Schmidtz, F.J.; Vanderah, D.J.; Hollenbeak, K.H.; Enwall, C.E.L.; Gopichand, Y.; Sengupta, P.K.; Hossain, M.B.; Van Der Helm, D. Metabolites from the marine sponge Tedania ignis. A new atisanediol and several known diketopiperazines. J. Org. Chem. 1983, 48, 3941–3945. [Google Scholar] [CrossRef]
- Shin, D.S.; Kim, S.; Yang, H.C.; Oh, K.B. Cloning and expression of isocitrate lyase, a key enzyme of the glyoxylate cycle, of Candida albicans for development of antifungal drugs. J. Microbiol. Biotechnol. 2005, 15, 652–655. [Google Scholar]
- Martins, M.B.; Carvalho, I. Diketopiperazines: Biological Activity and Synthesis. Tetrahedron 2007, 63, 9923–9932. [Google Scholar] [CrossRef]
- Lee, S.-H.; Won, T.H.; Kim, H.; Ahn, C.-H.; Shin, J.; Oh, K.-B.; Fusetani, N. Suvanine Sesterterpenes from a Tropical Sponge Coscinoderma sp. Inhibit Isocitrate Lyase in the Glyoxylate Cycle. Mar. Drugs 2014, 12, 5148–5159. [Google Scholar] [CrossRef]
- Dixon, G.H.; Kornberg, H.L. Assay methods for key enzymes of the glyoxylate assay. Biochem. J. 1959, 72, 3P. [Google Scholar]
- Hautzel, R.; Anke, H.; Sheldrick, W.S. Mycenon, a new metabolite from a Mycena species TA 87202 (basidiomycetes) as an inhibitor of isocitrate lyase. J. Antibiot. 1990, 43, 1240–1244. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Sharma, S.; Zu Bentrup, K.H.; McKinney, J.D.; Russell, D.G.; Jacobs, W.R.; Sacchettini, J.C. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Genet. 2000, 7, 663–668. [Google Scholar]
- Ahn, C.-H.; Won, T.H.; Kim, H.; Shin, J.; Oh, K.-B. Inhibition of Candida albicans isocitrate lyase activity by cadiolides and synoilides from the ascidian Synoicum sp. Bioorganic Med. Chem. Lett. 2013, 23, 4099–4101. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds isolated are available from the authors. |
Compound | ICL IC50, μM (μg/mL) | MIC (μg/mL) |
---|---|---|
Glucose | ||
Cyclo(L-Phe-L-Val) | 109.50 ± 4.17 (27.74 ± 2.24) | >256 |
Cyclo(L-Pro-L-Val) | 516.28 ± 9.18 (101.32 ± 4.22) | >256 |
Cyclo(L-Pro-L-Leu) | 533.79 ± 3.12 (112.24 ± 1.94) | >256 |
Cyclo(L-Phe-L-Pro) | >1048.75 (>256) | >256 |
Cyclo(L-Pro-L-Tyr) | >984.16 (>256) | >256 |
3-Nitropropionate | 15.94 ± 2.13 (1.90 ± 1.57) | >256 |
Amphotericin B | ND 1 | 1 |
Strain | MIC (μg/mL) | |||
---|---|---|---|---|
Glucose | Acetate | |||
Cyclo(L-Phe-L-Val) | Amph B 1 | Cyclo(L-Phe-L-Val) | Amph B 1 | |
SC5314 | >256 | 1 | 32 | 0.5 |
ATCC10231 | >256 | 1 | 32 | 0.5 |
ATCC10259 | >256 | 1 | 64 | 0.5 |
ATCC11006 | >256 | 0.5 | 32 | 0.5 |
ATCC18804 | >256 | 1 | 64 | 0.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Hwang, J.-Y.; Shin, J.; Oh, K.-B. Inhibitory Effects of Diketopiperazines from Marine-Derived Streptomyces puniceus on the Isocitrate Lyase of Candida albicans. Molecules 2019, 24, 2111. https://doi.org/10.3390/molecules24112111
Kim H, Hwang J-Y, Shin J, Oh K-B. Inhibitory Effects of Diketopiperazines from Marine-Derived Streptomyces puniceus on the Isocitrate Lyase of Candida albicans. Molecules. 2019; 24(11):2111. https://doi.org/10.3390/molecules24112111
Chicago/Turabian StyleKim, Heegyu, Ji-Yeon Hwang, Jongheon Shin, and Ki-Bong Oh. 2019. "Inhibitory Effects of Diketopiperazines from Marine-Derived Streptomyces puniceus on the Isocitrate Lyase of Candida albicans" Molecules 24, no. 11: 2111. https://doi.org/10.3390/molecules24112111
APA StyleKim, H., Hwang, J. -Y., Shin, J., & Oh, K. -B. (2019). Inhibitory Effects of Diketopiperazines from Marine-Derived Streptomyces puniceus on the Isocitrate Lyase of Candida albicans. Molecules, 24(11), 2111. https://doi.org/10.3390/molecules24112111