Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn–Salen Oligomer Receptors
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Romano, J.A., Jr.; Lukey, B.J.; Salem, H. Chemical Warfare Agents Chemistry, Pharmacology, Toxicology, and Therapeutics, 2nd ed.; Taylor & Francis Group: Oxfordshire, UK, 2007. [Google Scholar]
- Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.-Y. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Acc. Chem. Res. 2012, 45, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Vale, J.A.; Marrs, T.C.; Maynard, R.L. Novichok: A murderous nerve agent attack in the UK. Clin. Toxicol. 2018, 56, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Stone, R. U.K. attack puts nerve agent in the spotlight. Science 2018, 359, 1314–1315. [Google Scholar] [CrossRef] [PubMed]
- Stone, R. How to defeat a nerve agent. Science 2018, 359, 23. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Lavoie, J.; Srinivasan, S.; Nagarajan, R. Using cheminformatics to find simulants for chemical warfare agents. J. Hazard. Mater. 2011, 194, 85–91. [Google Scholar] [CrossRef]
- Ohrui, Y.; Nagoya, T.; Kurimata, N.; Sodeyama, M.; Seto, Y. Identification of V-type nerve agents in vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator and fluoridating conversion tube. J. Mass Spectrom. 2017, 52, 472–479. [Google Scholar] [CrossRef]
- Tak, V.; Purohit, A.; Pardasani, D.; Goud, D.R.; Jain, R.; Dubey, D.K. Simultaneous detection and identification of precursors, degradation and co-products of chemical warfare agents in drinking water by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2014, 1370, 80–92. [Google Scholar] [CrossRef]
- Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent Progress on the Development of Chemosensors for Gases. Chem. Rev. 2015, 115, 7944–8000. [Google Scholar] [CrossRef]
- Sarkar, H.S.; Ghosh, A.; Das, S.; Maiti, P.K.; Maitra, S.; Mandal, S.; Sahoo, P. Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Lloyd, E.P.; Pilato, R.S.; Van Houten, K.A. Polymer-Bound 4-Pyridyl-5-hydroxyethyl-thiazole Fluorescent Chemosensors for the Detection of Organophosphate Nerve Agent Simulants. ACS Omega 2018, 3, 16028–16034. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, M.R.; Notman, S. Supramolecular chemistry and chemical warfare agents: From fundamentals of recognition to catalysis and sensing. Chem. Soc. Rev. 2013, 42, 9251–9267. [Google Scholar] [CrossRef] [PubMed]
- Tudisco, C.; Betti, P.; Motta, A.; Pinalli, R.; Bombaci, L.; Dalcanale, E.; Condorelli, G.G. Cavitand-Functionalized Porous Silicon as an Active Surface for Organophosphorus Vapor Detection. Langmuir 2012, 28, 1782–1789. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ruan, Y.; Brown, J.D.; Gallucci, J.; Maslak, V.; Hadad, C.M.; Badjic, J.D. Assembly of Amphiphilic Baskets into Stimuli-Responsive Vesicles. Developing a Strategy for the Detection of Organophosphorus Chemical Nerve Agents. J. Am. Chem. Soc. 2013, 135, 14964–14967. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ruan, Y.; Brown, J.D.; Hadad, C.M.; Badjic, J.D. Recognition Characteristics of an Adaptive Vesicular Assembly of Amphiphilic Baskets for Selective Detection and Mitigation of Toxic Nerve Agents. J. Am. Chem. Soc. 2014, 136, 17337–17342. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Chen, S.; Brown, J.D.; Hadad, C.M.; Badjic, J.D. Ubiquitous Assembly of Amphiphilic Baskets into Unilamellar Vesicles and Their Recognition Characteristics. Org. Lett. 2015, 17, 852–855. [Google Scholar] [CrossRef] [PubMed]
- Grate, J.W.; Kaganove, S.N.; Patrash, S.J.; Craig, R.; Bliss, M. Hybrid Organic/Inorganic Copolymers with Strongly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors. Chem. Mater. 1997, 9, 1201–1207. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Lee, H.; Lee, J.H.; Lee, J.H.; Jung, J.H.; Kim, J.S. A Mesoporous, Silica-Immobilized-Nanoparticle Colorimetric Chemosensor for the Detection of Nerve Agents. Adv. Funct. Mater. 2011, 21, 4035–4040. [Google Scholar] [CrossRef]
- Hiscock, J.R.; Piana, F.; Sambrook, M.R.; Wells, N.J.; Clark, A.J.; Vincent, J.C.; Busschaert, N.; Brown, R.C.D.; Gale, P.A. Detection of nerve agent via perturbation of supramolecular gel formation. Chem. Commun. 2013, 49, 9119–9121. [Google Scholar] [CrossRef]
- Ruan, Y.; Dalkilic, E.; Peterson, P.W.; Pandit, A.; Dastan, A.; Brown, J.D.; Polen, S.M.; Hadad, C.M.; Badjic, J.D. Trapping of organophosphorus chemical nerve agents in water with amino acid functionalized baskets. Chem. Eur. J. 2014, 20, 4251–4256. [Google Scholar] [CrossRef]
- Barba-Bon, A.; Costero, A.M.; Parra, M.; Gil, S.; Martinez-Manez, R.; Sancenon, F.; Gale, P.A.; Hiscock, J.R. Neutral 1,3-Diindolylureas for Nerve Agent Remediation. Chem. Eur. J. 2013, 19, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, M.R.; Hiscock, J.R.; Cook, A.; Green, A.C.; Holden, I.; Vincent, J.C.; Gale, P.A. Hydrogen bond-mediated recognition of the chemical warfare agent soman (GD). Chem. Commun. 2012, 48, 5605–5607. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Multitopic Supramolecular Detection of Chemical Warfare Agents by Fluorescent Sensors. ACS Omega 2019, 4, 7550–7555. [Google Scholar] [CrossRef]
- Trusso Sfrazzetto, G.; Millesi, S.; Pappalardo, A.; Tomaselli, G.A.; Ballistreri, F.P.; Toscano, R.M.; Fragalà, I.; Gulino, A. Nerve Gas Simulant Sensing by an Uranyl-Salen Monolayer Covalently Anchored on Quartz Substrates. Chem. Eur. J. 2017, 23, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Ballistreri, F.P.; Toscano, R.M.; Amato, M.E.; Pappalardo, A.; Gangemi, C.M.A.; Spidalieri, S.; Puglisi, R.; Trusso Sfrazzetto, G. A new Mn-Salen micellar nanoreactor for enantioselective epoxidation of alkenes in water. Catalysts 2018, 8, 129. [Google Scholar] [CrossRef]
- Ballistreri, F.P.; Gangemi, C.M.A.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. (Salen)Mn(III) catalyzed asymmetric epoxidation reactions by hydrogen peroxide in water: A green protocol. Int. J. Mol. Sci. 2016, 17, 1112. [Google Scholar] [CrossRef]
- Trusso Sfrazzetto, G.; Millesi, S.; Pappalardo, A.; Toscano, R.M.; Ballistreri, F.P.; Tomaselli, G.A.; Gulino, A. Olefin epoxidation by a (salen)Mn(III) catalyst covalently grafted on glass beads. Catal. Sci. Technol. 2015, 5, 673–679. [Google Scholar] [CrossRef]
- La Paglia Fragola, V.; Lupo, F.; Pappalardo, A.; Trusso Sfrazzetto, G.; Toscano, R.M.; Ballistreri, F.P.; Tomaselli, G.A.; Gulino, A. A surface-confined O:MnV(salen) oxene catalyst and high turnover values in asymmetric epoxidation of unfunctionalized olefins. J. Mater. Chem. 2012, 22, 20561–20565. [Google Scholar] [CrossRef]
- Zammataro, A.; Gangemi, C.M.A.; Pappalardo, A.; Toscano, R.M.; Puglisi, R.; Nicotra, G.; Fragalà, M.E.; Tuccitto, N.; Trusso Sfrazzetto, G. Covalently functionalized carbon nanoparticles with a chiral Mn-Salen: A new nanocatalyst for enantioselective epoxidation of alkenes. Chem. Commun. 2019, 55, 5255–5258. [Google Scholar] [CrossRef]
- Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Trusso Sfrazzetto, G. Chiral Zn-salen complexes: A new class of fluorescent receptors for enantiodiscrimination of chiral amines. New J. Chem. 2017, 41, 911–915. [Google Scholar] [CrossRef]
- Patti, A.; Pedotti, S.; Ballistreri, F.P.; Trusso Sfrazzetto, G. Synthesis and Characterization of Some Chiral Metal-Salen Complexes Bearing a Ferrocenophane Substituent. Molecules 2009, 14, 4312–4325. [Google Scholar] [CrossRef] [PubMed]
- Ballistreri, F.P.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. A New Heteroditopic Chiral Uranyl–Salen Receptor for Molecular Recognition of Amino Acid Ammonium Salts. Eur. J. Org. Chem. 2010, 3806–3810. [Google Scholar] [CrossRef]
- Amato, M.E.; Ballistreri, F.P.; D’Agata, S.; Pappalardo, A.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. Enantioselective Molecular Recognition of Chiral Organic Ammonium Ions and Amino Acids Using Cavitand-Salen-Based Receptors. Eur. J. Org. Chem. 2011, 5674–5680. [Google Scholar] [CrossRef]
- Pappalardo, A.; Amato, M.E.; Ballistreri, F.P.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. Pair of Diastereomeric Uranyl SalenCavitands Displaying Opposite Enantiodiscrimination of α-Amino Acid Ammonium Salts. J. Org. Chem. 2012, 77, 7684–7687. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, A.; Tudisco, C.; Ballistreri, F.P.; Condorelli, G.G.; Randazzo, R.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G.; Pappalardo, A. Enantioselective extraction mediated by a chiral cavitand–salen covalently assembled on a porous silicon surface. Chem. Commun. 2014, 50, 4993–4996. [Google Scholar] [CrossRef] [PubMed]
- Mihan, F.Y.; Bartocci, S.; Bruschini, M.; De Bernardin, P.; Forte, G.; Giannicchi, I.; Dalla Cort, A. Ion-Pair Recognition by Metal-Salophen and Metal-Salen Complexes. Austr. J. Chem. 2012, 65, 1638–1646. [Google Scholar] [CrossRef]
- Forte, G.; D’Urso, A.; Ballistreri, F.P.; Toscano, R.M.; Tomaselli, G.A.; Trusso Sfrazzetto, G.; Pappalardo, A. Enantiomeric Recognition of α-Amino Acid Derivatives by Chiral Uranyl-Salen Receptors. Tetrahedron Lett. 2015, 56, 2922–2926. [Google Scholar] [CrossRef]
- Puglisi, R.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular recognition of a CWA simulant by metal–salen complexes: The first multi-topic approach. Chem. Commun. 2018, 54, 11156–11159. [Google Scholar] [CrossRef]
- Huskens, J.; Prins, L.J.; Haag, R.; Ravoo, B.J. Multivalency: Concepts, Research & Applications; Wiley and Sons: Hoboken, NJ, USA, 2018; ISBN 978-1-119-14346-8. [Google Scholar]
- Tuccitto, N.; Amato, T.; Gangemi, C.M.A.; Trusso Sfrazzetto, G.; Puglisi, R.; Pappalardo, A.; Ballistreri, F.P.; Messina, G.M.L.; Li-Destri, G.; Marletta, G. Driving Coordination Polymer Monolayer Formation by CompetitiveReactions at the Air/Water Interface. Langmuir 2018, 34, 11706–11713. [Google Scholar] [CrossRef]
- Evans, R.; Deng, Z.; Rogerson, A.K.; McLachlan, A.S.; Richards, J.J.; Nilsson, M.; Morris, G.A. Quantitative Interpretation of Diffusion-Ordered NMR Spectra: Can We Rationalize Small Molecule Diffusion Coefficients? Angew. Chem. Int. Ed. 2013, 52, 3199–3202. [Google Scholar] [CrossRef]
- Giuffrida, M.L.; Rizzarelli, E.; Tomaselli, G.A.; Satriano, C.; Trusso Sfrazzetto, G. A novel fully water-soluble Cu(I) probe for fluorescence live cell imaging. Chem. Commun. 2014, 50, 9835–9838. [Google Scholar] [CrossRef] [PubMed]
- Trusso Sfrazzetto, G.; Satriano, C.; Tomaselli, G.A.; Rizzarelli, E. Synthetic fluorescent probes to map metallostasis and intracellularfate of zinc and copper. Coord. Chem. Rev. 2016, 311, 125–167. [Google Scholar] [CrossRef]
- Jennings, A.R.; Son, D.Y. Efficient synthesis and anion recognition of a colorimetric preorganized tripodal thiourea compound. Tetrahedron Lett. 2012, 53, 2181–2184. [Google Scholar] [CrossRef]
- Pappalardo, A.; Ballistreri, F.P.; Li Destri, G.; Mineo, P.G.; Tomaselli, G.A.; Toscano, R.M.; Trusso Sfrazzetto, G. Supramolecular Polymer Networks Based on Calix[5]arene Tethered Poly(p-phenyleneethynylene). Macromolecules 2012, 45, 7549–7556. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Zn–Oligomers are available from the authors. |
Oligomer a | D (× 10−10 m2s−1) | Calcd. Mn b | Degree of Polymerization c |
---|---|---|---|
Oligo–Salen–A | 3.41 | 4650 | ~10 |
Oligo–Salen–B | 4.23 | 2760 | ~6 |
Oligo–Salen–C | 5.29 | 1640 | ~4 |
Guest: DMMP | Zn–Oligo–A | Zn–Oligo–B | Zn–Oligo–C | Zn–5–tbut (Monomer) |
---|---|---|---|---|
LogK a | 4.86 | 4.98 | 5.69 | 4.33 [39] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puglisi, R.; Mineo, P.G.; Pappalardo, A.; Gulino, A.; Trusso Sfrazzetto, G. Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn–Salen Oligomer Receptors. Molecules 2019, 24, 2160. https://doi.org/10.3390/molecules24112160
Puglisi R, Mineo PG, Pappalardo A, Gulino A, Trusso Sfrazzetto G. Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn–Salen Oligomer Receptors. Molecules. 2019; 24(11):2160. https://doi.org/10.3390/molecules24112160
Chicago/Turabian StylePuglisi, Roberta, Placido G. Mineo, Andrea Pappalardo, Antonino Gulino, and Giuseppe Trusso Sfrazzetto. 2019. "Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn–Salen Oligomer Receptors" Molecules 24, no. 11: 2160. https://doi.org/10.3390/molecules24112160
APA StylePuglisi, R., Mineo, P. G., Pappalardo, A., Gulino, A., & Trusso Sfrazzetto, G. (2019). Supramolecular Detection of a Nerve Agent Simulant by Fluorescent Zn–Salen Oligomer Receptors. Molecules, 24(11), 2160. https://doi.org/10.3390/molecules24112160