A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Standards and Reagents
3.2. Samples
- BG—black garlic samples were submitted to a heat treatment process by a Portuguese company.
- WGI—white garlic samples were cultivated within an intensive farming system and obtained in 2015 in a large commercial area in the south of Spain.
- WGT-A and WGT-TM—white garlic samples were cultivated within traditional farming systems and obtained in 2015 directly from the producers in local markets at Bragança (Trás-os-Montes, Portugal) and Silves (Algarve, Portugal), respectively.
3.3. Nutritional Value and Hydrophilic Compounds
3.3.1. Macronutrients and Energetic Value
3.3.2. Free Sugars
3.3.3. Organic Acids
3.4. Lipophilic Compounds
3.4.1. Fatty Acids
3.4.2. Tocopherols
3.5. Evaluation of Selected Bioactive Properties
3.5.1. Extraction Procedure
3.5.2. Antioxidant Activity
3.5.3. Antimicrobial Activity
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cunha, A.P.; Silva, A.P.; Roque, O.R. Plantas e Produtos Vegetais em Fitoterapia, 2nd ed.; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2006; ISBN 972-31-1010-5. [Google Scholar]
- FAO. FAO—Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 27 December 2016).
- Cunha, A.P.; Ribeiro, J.A.; Roque, O.R. Plantas Aromáticas em Portugal—Caracterização e Utilizações, 2nd ed.; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2009; ISBN 978-972-31-1170-5. [Google Scholar]
- Fintelmann, V.; Weiss, R.F. Manual de Fitoterapia; Nova Guanabara: Brasil, 2010; ISBN 978-85-277-1620-8. [Google Scholar]
- Ried, K. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review. J. Nutr. 2016, 146, 389S–396S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, Y.; Zhou, T.; Zheng, J.; Li, S.; Li, H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients 2016, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem. 2016, 211, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.C.H.; Nwachukwu, I.D.; Slusarenko, A.J. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131, 955–962. [Google Scholar] [CrossRef]
- Lanzotti, V.; Scala, F.; Bonanomi, G. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem. Rev. 2014, 13, 769–791. [Google Scholar] [CrossRef]
- Ha, A.W.; Ying, T.; Kim, W.K. The effects of black garlic (Allium satvium) extracts on lipid metabolism in rats fed a high fat diet. Nutr. Res. Pract. 2015, 9, 30–36. [Google Scholar] [CrossRef]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Bae, E.S.; Cho, Y.S.; Yong, D.Y.; Seon, H.S.; Park, J.H. Changes in S -allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT—Food Sci. Technol. 2014, 55, 397–402. [Google Scholar] [CrossRef]
- Choi, I.S.; Cha, H.S.; Lee, Y.S. Physicochemical and antioxidant properties of black garlic. Molecules 2014, 19, 16811–16823. [Google Scholar] [CrossRef]
- Jeong, Y.Y.; Ryu, J.H.; Shin, J.H.; Kang, M.J.; Kang, J.R.; Han, J.; Kang, D. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules 2016, 21, 430. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Wei, F.; Lu, Y.; Kodani, Y.; Nakada, M.; Miyakawa, T.; Tanokura, M. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing. J. Agric. Food Chem. 2015, 63, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Hacıseferoğulları, H.; Özcan, M.; Demir, F.; Çalışır, S. Some nutritional and technological properties of garlic (Allium sativum L.). J. Food Eng. 2005, 68, 463–469. [Google Scholar] [CrossRef]
- Khalid, N.; Ahmed, I.; Latif, M.S.Z.; Rafique, T.; Fawad, S.A. Comparison of antimicrobial activity, phytochemical profile and minerals composition of garlic Allium sativum and Allium tuberosum. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 311–317. [Google Scholar] [CrossRef]
- Suleria, H.A.; Sadiq Butt, M.; Muhammad Anjum, F.; Saeed, F.; Batool, R.; Nisar Ahmad, A. Aqueous garlic extract and its phytochemical profile; special reference to antioxidant status. Int. J. Food Sci. Nutr. 2012, 63, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Li, F.M.; Tong, L.I.; Wei, L.I.; De Yang, L. Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage. Ind. Crops Prod. 2015, 69, 137–142. [Google Scholar]
- Mashayekhi, K.; Mohammadi Chiane, S.; Mianabadi, M.; Ghaderifar, F.; Mousavizadeh, S.J. Change in carbohydrate and enzymes from harvest to sprouting in garlic. Food Sci. Nutr. 2016, 4, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Kamanna, V.S.; Chandrasekhara, N.; Technological, C.F. Fatty Acid Composition of Garlic (AIlium safivum Linnaeus). J. Am. Oil Chem. Soc. 1980, 175–176. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Methods of Analysis of AOAC, 20th; George, W.L., Jr., Ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Grangeia, C.; Heleno, S.A.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Res. Int. 2011, 44, 1029–1035. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized analysis of organic acids in edible mushrooms from portugal by ultra fast liquid chromatography and photodiode array detection. Food Anal. Methods 2013, 6, 309–316. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Tocopherols composition of Portuguese wild mushrooms with antioxidant capacity. Food Chem. 2010, 119, 1443–1450. [Google Scholar] [CrossRef] [Green Version]
- Sarmento, A.; Barros, L.; Fernandes, Â.; Carvalho, A.M.; Ferreira, I.C.F.R. Valorization of traditional foods: Nutritional and bioactive properties of Cicer arietinum L. and Lathyrus sativus L. pulses. J. Sci. Food Agric. 2015, 95, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Barros, L.; Alves, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food Funct. 2016, 7, 3083–3090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.; Fernandes, A.; Barros, L.; Ciric, A.; Sokovic, M.; Ferreira, I.C.F.R. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chem. 2018, 245, 7–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples are available from the authors. |
BG | WGI | WGT-A | WGT-ATM | |
---|---|---|---|---|
Moisture (%) | 54 ± 3 c | 62 ± 7 b | 64.7 ± 0.5 b | 74 ± 2 a |
Nutritional value | g/100 g fw | |||
Fat | 0.722 ± 0.001 a | 0.47 ± 0.02 c | 0.67 ± 0.03 b | 0.74 ± 0.02 a |
Proteins | 7.4 ± 0.1 b | 6.5 ± 0.1 c | 7.8 ± 0.2 a | 5.2 ± 0.1 d |
Ash | 3.2 ± 0.1 a | 2.9 ± 0.1 b | 2.7 ± 0.2 c | 1.60 ± 0.04 d |
Carbohydrates | 35 ± 3 a | 28 ± 2 b | 24.2 ± 0.4 b | 18 ± 2 c |
Energy (kcal/100 g fw) | 177 ± 8 a | 141 ± 8 b | 134 ± 2 b | 100 ± 9 c |
Free sugars | g/100 g fw | |||
Xylose | 0.82 ± 0.01 | nd | nd | nd |
Fructose | 30.4 ± 0.7 a | 0.45 ± 0.01 b | 0.09 ± 0.01 d | 0.20 ± 0.01 c |
Glucose | 2.14 ± 0.03 a | 0.28 ± 0.02 b | 0.04 ± 0.01 d | 0.12 ± 0.01 c |
Sucrose | 0.23 ± 0.05 d | 0.58 ± 0.01 b | 1.35 ± 0.01 a | 0.38 ± 0.01 c |
Total | 33.6 ± 0.7 a | 1.32 ± 0.05 bc | 1.48 ± 0.01 b | 0.70 ± 0.01 c |
Organic acids | g/100 g fw | |||
Oxalic acid | 0.12 ± 0.02 c | 0.13 ± 0.01 c | 0.257 ± 0.001 a | 0.20 ± 0.01 b |
Malic acid | 0.32 ± 0.01 a | tr | 0.006 ± 0.003 b | 0.32 ± 0.01 a |
Pyruvic acid | tr | 1.43 ± 0.01 a | 1.38 ± 0.01 b | 0.10 ± 0.01 c |
Citric acid | nd | 1.07 ± 0.01 a | 0.57 ± 0.02 c | 0.82 ± 0.02 b |
Fumaric acid | nd | tr | tr | tr |
Total | 0.430 ± 0.001 d | 2.64 ± 0.01 a | 2.21 ± 0.01 b | 1.44 ± 0.01 c |
BG | WGI | WGT-A | WGT-ATM | |
---|---|---|---|---|
Fatty Acids | Relative Percentage (%) | |||
C6:0 | 1.4 ± 0.1 | 1.01 ± 0.01 | 0.61 ± 0.05 | 1.4 ± 0.1 |
C8:0 | 1.15 ± 0.06 | 0.75 ± 0.01 | 0.47 ± 0.03 | 1.05 ± 0.06 |
C10:0 | 3.06 ± 0.01 | 1.93 ± 0.04 | 1.17 ± 0.04 | 2.61 ± 0.06 |
C11:0 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.15 ± 0.01 | 0.01 ± 0.01 |
C12:0 | 1.80 ± 0.07 | 1.15 ± 0.04 | 0.69 ± 0.01 | 1.46 ± 0.02 |
C13:0 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.02 ± 0.01 | 0.05 ± 0.01 |
C14:0 | 6.7 ± 0.3 | 4.4 ± 0.2 | 2.59 ± 0.02 | 5.5 ± 0.3 |
C14:1 | 0.10 ± 0.01 | 0.07 ± 0.01 | 0.05 ± 0.01 | 0.09 ± 0.01 |
C15:0 | 1.00 ± 0.04 | 0.72 ± 0.03 | 0.55 ± 0.01 | 0.80 ± 0.02 |
C16:0 | 25.3 ± 0.5 | 20.9 ± 0.4 | 16.80 ± 0.03 | 21.8 ± 0.2 |
C16:1 | 0.64 ± 0.03 | 0.56 ± 0.01 | 0.49 ± 0.01 | 0.67 ± 0.01 |
C17:0 | 1.30 ± 0.02 | 1.08 ± 0.01 | 0.75 ± 0.01 | 1.02 ± 0.01 |
C18:0 | 16.4 ± 0.2 | 11.2 ± 0.1 | 7.13 ± 0.01 | 12.4 ± 0.2 |
C18:1n9 | 24.1 ± 0.3 | 18.4 ± 0.2 | 12.38 ± 0.04 | 20.4 ± 0.2 |
C18:2n6c | 11.0 ± 0.1 | 29.2 ± 0.3 | 46.8 ± 0.1 | 24.0 ± 0.3 |
C18:3n3 | 2.14 ± 0.01 | 5.03 ± 0.04 | 5.74 ± 0.01 | 3.61 ± 0.03 |
C20:0 | 0.95 ± 0.03 | 0.80 ± 0.02 | 0.77 ± 0.07 | 0.77 ± 0.02 |
C20:1 | 0.05 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.01 |
C20:2 | 0.01 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 |
C20:3n6 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 |
C20:4n6 | 0.29 ± 0.01 | 0.17 ± 0.01 | 0.09 ± 0.01 | 0.21 ± 0.01 |
C20:3n3 | 0.31 ± 0.01 | 0.23 ± 0.01 | 0.22 ± 0.01 | 0.21 ± 0.01 |
C20:5n3 | 0.12 ± 0.01 | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.12 ± 0.01 |
C22:0 | 1.18 ± 0.05 | 1.23 ± 0.05 | 1.35 ± 0.01 | 1.07 ± 0.04 |
C22:1n9 | 0.03 ± 0.01 | 0.09 ± 0.01 | nd | 0.04 ± 0.01 |
C23:0 | 0.23 ± 0.01 | 0.36 ± 0.02 | 0.37 ± 0.01 | 0.31 ± 0.02 |
C24:0 | 0.57 ± 0.06 | 0.52 ± 0.01 | 0.57 ± 0.04 | 0.41 ± 0.01 |
SFA | 61.1 ± 0.4 a | 46.0 ± 0.5 c | 34.0 ± 0.2 d | 50.6 ± 0.5 b |
MUFA | 25.0 ± 0.3 a | 19.2 ± 0.2 c | 13.00 ± 0.03 d | 21.2 ± 0.2 b |
PUFA | 13.90 ± 0.09 d | 34.8 ± 0.3 b | 53.0 ± 0.1 a | 28.2 ± 0.3 c |
Tocopherols | μg/100 g fw | |||
α-Tocopherol | 180 ± 2 b | 203 ± 4 a | 140 ± 1 d | 152 ± 3 c |
BG | WGI | WGT-A | WGT-ATM | |
---|---|---|---|---|
EC50 values (mg/mL) | ||||
DPPH scavenging activity | 4.4 ± 0.2 d | 26 ± 1 c | 33.8 ± 0.2 a | 31 ± 1 b |
Reducing power | 1.25 ± 0.04 d | 14.7 ± 0.2 c | 26.9 ± 0.2 a | 19.9 ± 0.2 b |
β-carotene bleaching inhibition | 0.27 ± 0.01 d | 0.44 ± 0.01 b | 0.46 ± 0.01 a | 0.39 ± 0.01 c |
TBARS inhibition | 0.39 ± 0.01 d | 0.88 ± 0.06 c | 2.3 ± 0.1 a | 1.0 ± 0.1 b |
Bacterial Strains | Gram-Positive | Gram-Negative | |||||||
---|---|---|---|---|---|---|---|---|---|
Garlic Samples | Enterococcus faecalis CHTMAD | Listeria monocytogenes | Methicillin-susceptible Staphylococcus aureus | Methicillin-resistant Staphylococcus aureus | Acinetobacter baumannii | Escherichia coli | Klebsiella pneumoniae | Pseudomonas aeruginosa | |
BG | MIC MBC | 6.25 >100 | 12.5 >100 | 3.125 100 | 3.125 50 | 100 100 | 25 50 | 100 >100 | 50 100 |
WGI | MIC MBC | >100 >100 | >100 >100 | >100 >100 | 100 >100 | >100 >100 | >100 >100 | >100 >100 | >100 >100 |
WGT-A | MIC MBC | >100 >100 | 100 >100 | >100 >100 | >100 >100 | 100 >100 | >100 >100 | >100 >100 | >100 >100 |
WGT-ATM | MIC MBC | >100 >100 | 100 >100 | 100 >100 | 50 >100 | 100 100 | >100 >100 | >100 >100 | >100 >100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botas, J.; Fernandes, Â.; Barros, L.; Alves, M.J.; Carvalho, A.M.; Ferreira, I.C.F.R. A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties. Molecules 2019, 24, 2194. https://doi.org/10.3390/molecules24112194
Botas J, Fernandes Â, Barros L, Alves MJ, Carvalho AM, Ferreira ICFR. A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties. Molecules. 2019; 24(11):2194. https://doi.org/10.3390/molecules24112194
Chicago/Turabian StyleBotas, Joana, Ângela Fernandes, Lillian Barros, Maria José Alves, Ana Maria Carvalho, and Isabel C.F.R. Ferreira. 2019. "A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties" Molecules 24, no. 11: 2194. https://doi.org/10.3390/molecules24112194
APA StyleBotas, J., Fernandes, Â., Barros, L., Alves, M. J., Carvalho, A. M., & Ferreira, I. C. F. R. (2019). A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties. Molecules, 24(11), 2194. https://doi.org/10.3390/molecules24112194