Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. TiO2 Degussa P-25 Characterization
2.2. Effect of Acetonitrile on the Yield of Cyclohexane Conversion
2.3. Optimization of Cyclohexane Oxofunctionalization
2.4. Cyclohexane Oxofunctionalization under Sunlight Irradiation
2.5. Radical Intermediates Detected by Electron Paramagnetic Resonance (EPR) Spectroscopy
3. Materials and Methods
3.1. Reagents
3.2. General Procedures
3.3. Titanium Dioxide Degussa P-25 Characterization
3.4. Cyclohexane Oxofunctionalization
3.5. Multivariate Experiments
3.6. Identification of Oxofunctionalized Products
3.7. Solar Experiments
3.8. In Situ Electron Paramagnetic Resonance Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, C.-J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA 2008, 105, 13197–13202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuchardt, U.; Cardoso, D.; Sercheli, R.; Pereira, R.; Rosenira, S.; Guerreiro, M.C.; Mandelli, D.; Spinacé, E.V.; Pires, E.L. Cyclohexane oxidation continues to be a challenge. Appl. Catal. A Gen. 2001, 211, 1–17. [Google Scholar] [CrossRef]
- Wan, Y.; Guo, Q.; Wang, K.; Wang, X. Efficient and selective photocatalytic oxidation of cyclohexane using O2 as oxidant in VOCl2 solution and mechanism insight. Chem. Eng. Sci. 2019, 203, 163–172. [Google Scholar] [CrossRef]
- Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev. 2014, 43, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Sideri, I.K.; Voutyritsa, E.; Kokotos, C.G. Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: The awakening of a sleeping giant. Org. Biomol. Chem. 2018, 16, 4596–4614. [Google Scholar] [CrossRef] [PubMed]
- Maldotti, A.; Molinari, A.; Amadelli, R. Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2. Chem. Rev. 2002, 102, 3811–3836. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, B.; Pan, R.; Yao, J.; Qiu, J.; Luo, L.; Liu, Y. Safe and facile hydrogenation of commercial Degussa P25 at room temperature with enhanced photocatalytic activity. RSC Adv. 2014, 4, 1128–1132. [Google Scholar] [CrossRef]
- Mehrvar, M.; Anderson, W.A.; Moo-Young, M. Comparison of the photoactivities of two commercial 1,4-dioxane. Int. J. Photoenergy 2002, 04, 141–146. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Kisch, H. Semiconductor photocatalysis-Mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 2013, 52, 812–847. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Po-Lock, Y.; Kutal, C. Photocatalytic oxidation of cyclohexane over TiO2 nanoparticles by molecular oxygen under mild conditions. J. Chem. Technol. Biotechnol. 2003, 78, 1246–1251. [Google Scholar] [CrossRef]
- Du, P.; Moulijn, J.A.; Mul, G. Selective photo (catalytic)-oxidation of cyclohexane: Effect of wavelength and TiO2 structure on product yields. J. Catal. 2006, 238, 342–352. [Google Scholar] [CrossRef]
- Lu, G.; Gao, H.; Suo, J.; Li, S. Catalytic oxidation of cyclohexane into cyclohexanol and cyclohexanone over a TiO2/TS-1 system by dioxygen under UV irradiation. J. Chem. Soc. Chem. Commun. 1994, 2423–2424. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hidalgo, M.C.; Navío, J.A.; Vaiano, V.; Sannino, D.; Ciambelli, P. Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts. Catal. Today 2013, 209, 164–169. [Google Scholar] [CrossRef]
- Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. Photocatalysis: A promising route for 21st century organic chemistry. Chem. Commun. 2007, 3425–3437. [Google Scholar] [CrossRef]
- Mu, W.; Herrmann, J.M.; Pichat, P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett. 1989, 3, 73–84. [Google Scholar] [CrossRef]
- Almquist, C.B.; Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: An investigation of competitive adsorption and its effects on product formation and selectivity. Appl. Catal. A Gen. 2001, 214, 259–271. [Google Scholar] [CrossRef]
- Boarini, P.; Carassiti, V.; Maldotti, A.; Amadelli, R. Photocatalytic Oxygenation of Cyclohexane on Titanium Dioxide Suspensions: Effect of the Solvent and of Oxygen. Langmuir 1998, 14, 2080–2085. [Google Scholar] [CrossRef]
- Sackett, D.D.; Fox, M.A. Effect of cosolvent additives on relative rates of photooxidation on semiconductor surfaces. J. Phys. Org. Chem. 1988, 1, 103–114. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Ehrampoush, M.H.; Ghaneian, M.T.; Rahimi, S.; Ahmadian, M. Remmoval of Methylene Blue Dye from Textile Simulated Sample Using Tubular Reactor and TiO2/UV-C Photocatalytic Process. Iran. J. Environ. Health Sci. Eng. 2011, 8, 35–40. [Google Scholar]
- Elmolla, E.S.; Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 2010, 252, 46–52. [Google Scholar] [CrossRef]
- Rincón, A.G.; Pulgarin, C. Photocatalytical inactivation of E. coli: Effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Appl. Catal. B Environ. 2003, 44, 263–284. [Google Scholar] [CrossRef]
- Brusa, M.A.; Di Iorio, Y.; Churio, M.S.; Grela, M.A. Photocatalytic air oxidation of cyclohexane in CH2Cl2–C6H12 mixtures over TiO2 particles an attempt to rationalize the positive effect of dichloromethane on the yields of valuable oxygenates. J. Mol. Catal. A Chem. 2007, 268, 29–35. [Google Scholar] [CrossRef]
- Mills, A.; Davies, R.H.; Worsley, D. Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22, 417. [Google Scholar] [CrossRef]
- Turchi, C.S.; Ollis, D.F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 1990, 122, 178–192. [Google Scholar] [CrossRef]
- Conte, M.; Liu, X.; Murphy, D.M.; Hutchings, G.J. Cyclohexane oxidation using Au/MgO: An investigation of the reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 16279–16285. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 1970, 22, 903–922. [Google Scholar] [CrossRef]
Sample Availability: Samples of the catalyst are available from the authors. |
Experiment | Amount of Photocatalyst (g L−1) | Concentration of Water (mmol L−1) |
---|---|---|
4.88 (−1) | 2226 (−1) | |
2 | 6.16 (1) | 2226 (−1) |
3 | 4.88 (−1) | 2666 (1) |
4 | 6.16 (1) | 2666 (1) |
5 | 4.62 (−√2) | 2446 (0) |
6 | 6.42 (√2) | 2446 (0) |
7 | 5.52 (0) | 2135 (−√2) |
8 | 5.52 (0) | 2757 (√2) |
9 | 5.52 (0) | 2446 (0) |
10 | 5.52 (0) | 2446 (0) |
11 | 5.52 (0) | 2446 (0) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henríquez, A.; Melin, V.; Moreno, N.; Mansilla, H.D.; Contreras, D. Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light. Molecules 2019, 24, 2244. https://doi.org/10.3390/molecules24122244
Henríquez A, Melin V, Moreno N, Mansilla HD, Contreras D. Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light. Molecules. 2019; 24(12):2244. https://doi.org/10.3390/molecules24122244
Chicago/Turabian StyleHenríquez, Adolfo, Victoria Melin, Nataly Moreno, Héctor D. Mansilla, and David Contreras. 2019. "Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light" Molecules 24, no. 12: 2244. https://doi.org/10.3390/molecules24122244
APA StyleHenríquez, A., Melin, V., Moreno, N., Mansilla, H. D., & Contreras, D. (2019). Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light. Molecules, 24(12), 2244. https://doi.org/10.3390/molecules24122244