## Critical appraisal of kinetic calculation methods applied to overlapping

## multistep reactions

Nikita V. Muravyev,<sup>1,\*</sup> Alla N. Pivkina,<sup>1</sup> and Nobuyoshi Koga<sup>2</sup>

<sup>1</sup>Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4, Kosygin Str.. 119991 Moscow, Russia <sup>2</sup>Chemistry Laboratory, Department of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

## Contents

Figure S1. Temperature dependence of the ratio of rate constants for the first and second reactions,  $k_1/k_2$ , assumed for simulating the kinetic rate data (cases 1–4). Figure S2. Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 1 at Figure S3. Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 2 at Figure S4. Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 3 at Figure S5. Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 4 at Figure S6. Changes in  $E_{\rm a}$  calculated from simulated TGA curves using different isoconversional methods of Friedman, Figure S7. Errors in  $E_a$  calculated from simulated TGA and DSC curves using integral isoconversional methods: (a) Flynn-Wall-Ozawa- (FWO) method in comparison with differential Friedman method and (b) Comparison of FWO and Figure S8. Comparison of the conversion-temperature curves calculated by isoconversional technique and exact outputs from assumed model: : (a) Case 1, heating rate of 10<sup>-9</sup> K min<sup>-1</sup>; (b) Case 1, 10<sup>9</sup> K min<sup>-1</sup>; (c) Case 2, heating rate of 10<sup>-9</sup> K min<sup>-1</sup>; (d) Case 2, 10<sup>6</sup> K min<sup>-1</sup>; (e) Case 3, heating rate of 10<sup>-9</sup> K min<sup>-1</sup>; (f) Case 3, 10<sup>9</sup> K min<sup>-1</sup>; (g) Case 4, heating Table S1. Comparison of the conversion rate peak temperatures for the assumed model and the isoconversional Figure S9. Deconvoluted using Fraser–Suzuki functions peaks along and the kinetic rate data from the exact model at  $\beta$ Figure S10. Isoconversional Friedman plots for the deconvoluted data: (a) DSC data, Case 1 (Figure 3a), (b) DTG data, Table S4. Summary of the results of the formal kinetic analysis with the kinetic scheme as two consecutive first-order Figure S11. Formal kinetic and KDA fit (red lines) of data for Case 1 (points). (a) fit of DSC data with two independent Bna reactions, (b) fit of DTG data with two independent Bna reactions, (c, d) fit of DSC and DTG data Figure S12. Formal kinetic and KDA fit (red lines) of data for Case 3 (points). (a) fit of DSC data with two independent Bna reactions, (b) fit of DTG data with two independent Bna reactions, (c, d) fit of DSC and DTG data Figure S13. Linear dependence between  $\lg A$  and  $E_a$  observed for the kinetic parameters calculated using various 

<sup>\*</sup> Correspondence: Tel\Fax: +74991378203. E-mail: <u>n.v.muravyev@ya.ru</u>



**Figure S2.** Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 1 at heating rates of 1 (a), 2 (b), 5 (c) and 10 K min<sup>-1</sup>.



**Figure S3.** Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 2 at heating rates of 1 (a), 2 (b), 5 (c) and 10 K min<sup>-1</sup>.



**Figure S4.** Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 3 at heating rates of 1 (a), 2 (b), 5 (c) and 10 K min<sup>-1</sup>.



**Figure S5.** Conversion rates for each reaction process calculated according to eq. (2), total conversion rate calculated according to eq. (3) (from DTG), and total conversion rate calculated according to eq. (4) (from DSC) for Case 4 at heating rates of 1 (a), 2 (b), 5 (c) and 10 K min<sup>-1</sup>.



**Figure S6.** Changes in  $E_a$  calculated from simulated TGA curves using different isoconversional methods of Friedman, Vyazovkin, Starink and Flynn-Wall-Ozawa: (a) Case 1, (b) Case 2, (c) Case 3, and (d) Case 4.



**Figure S7.** Errors in  $E_a$  calculated from simulated TGA and DSC curves using integral isoconversional methods: (a) Flynn-Wall-Ozawa- (FWO) method in comparison with differential Friedman method and (b) Comparison of FWO and Starink methods.



**Figure S8.** Comparison of the conversion-temperature curves calculated by isoconversional technique and exact outputs from assumed model: : (a) Case 1, heating rate of  $10^{-9}$  K min<sup>-1</sup>; (b) Case 1,  $10^{9}$  K min<sup>-1</sup>; (c) Case 2, heating rate of  $10^{-9}$  K min<sup>-1</sup>; (d) Case 2,  $10^{6}$  K min<sup>-1</sup>; (e) Case 3, heating rate of  $10^{-9}$  K min<sup>-1</sup>; (f) Case 3,  $10^{9}$  K min<sup>-1</sup>; (g) Case 4, heating rate of  $10^{-9}$  K min<sup>-1</sup>; (h) Case 4,  $10^{9}$  K min<sup>-1</sup>; (c) Case 3,  $10^{9}$  K min<sup>-1</sup>; (d) Case 5,  $10^{-9}$  K min<sup>-1</sup>; (e) Case 6,  $10^{-9}$  K min<sup>-1</sup>; (f) Case 6,  $10^{-9}$  K min<sup>-1</sup>; (g) Case 7,  $10^{-9}$  K min<sup>-1</sup>; (h) Case 7,  $10^{9}$  K min<sup>-1</sup>; (h) Case

|      |                                                 | Peak Temperature [K] at rate [K min <sup>-1</sup> ] |       |       |      |       |       |  |  |
|------|-------------------------------------------------|-----------------------------------------------------|-------|-------|------|-------|-------|--|--|
| Case | signal                                          | 1E-09                                               | 1E-06 | 0.001 | 1000 | 1E+06 | 1E+09 |  |  |
| 1    | Exact model,<br>DSC                             | 291                                                 | 336   | 395   | 615  | 839   | *     |  |  |
|      | Isoconversional prediction, DSC                 | 278                                                 | 320   | 379   | 667  | 1102  | 2763  |  |  |
| 1    | Exact model,<br>DTG                             | 333                                                 | 371   | 417   | 614  | 839   | *     |  |  |
|      | Isoconversional prediction, DTG                 | 303                                                 | 346   | 405   | 591  | 766   | 1106  |  |  |
|      | Exact model,<br>DTG                             | 276                                                 | 318   | 374   | 576  | 781   | 1185  |  |  |
|      | Isoconversional prediction, DTG                 | 276                                                 | 318   | 374   | 576  | 781   | 1185  |  |  |
|      | Exact model,<br>DSC                             | 274                                                 | 315   | 371   | 568  | 766   | 1154  |  |  |
| 2    | Isoconversional prediction, DSC                 | 273                                                 | 314   | 369   | 564  | 760   | 1144  |  |  |
|      | prediction, DSC-<br>separate                    | 272                                                 | 313   | 367   | 560  | 752   | 1127  |  |  |
|      | Isoconversional<br>prediction, DSC-<br>absolute | 274                                                 | 315   | 371   | 568  | 765   | 1151  |  |  |
|      | Exact model,<br>DTG                             | 334                                                 | 371   | 418   | 556  | 663   | 822   |  |  |
|      | Isoconversional prediction, DTG                 | 329                                                 | 368   | 417   | 558  | 668   | 831   |  |  |
|      | Exact model,<br>DSC                             | 334                                                 | 371   | 415   | 554  | 663   | 822   |  |  |
| 3    | Isoconversional prediction, DSC                 | 332                                                 | 368   | 415   | 549  | 651   | 797   |  |  |
|      | Isoconversional<br>prediction, DSC-<br>separate | 329                                                 | 369   | 419   | 552  | 666   | 835   |  |  |
|      | Isoconversional<br>prediction, DSC-<br>absolute | 323                                                 | 362   | 412   | 638  | 674   | 854   |  |  |
| 4    | Exact model,<br>DSC                             | 286                                                 | 331   | 392   | 618  | 859   | 1364  |  |  |
|      | Isoconversional prediction, DSC                 | 286                                                 | 331   | 393   | 618  | 857   | 1365  |  |  |
|      | Exact model,<br>DTG                             | 286                                                 | 331   | 392   | 618  | 859   | 1364  |  |  |
|      | Isoconversional prediction, DTG                 | 285                                                 | 331   | 392   | 618  | 857   | 1362  |  |  |

 Table S1. Comparison of the conversion rate peak temperatures for the assumed model and the isoconversional calculations

\*unstable solution



**Figure S9.** Deconvoluted using Fraser–Suzuki functions peaks along and the kinetic rate data from the exact model at  $\beta = 1$  K min<sup>-1</sup>: (a) DSC, Case 2, (b) DSC, Case 3, (c) DSC, Case 4 and (d) DTG, Case 4.



**Figure S10.** Isoconversional Friedman plots for the deconvoluted data: (a) DSC data, Case 1 (Figure 3a), (b) DTG data, Case 1 (Figure 3b), (c) DSC data, Case 2 (Figure S8a), (d) DSC data, Case 3 (Figure S8b).

| Case | Signal | Peaks                        | First peak                      |                              |             | Second peak                     |                  |             | η             | γ             |
|------|--------|------------------------------|---------------------------------|------------------------------|-------------|---------------------------------|------------------|-------------|---------------|---------------|
|      |        |                              | $E_{a1}$ / kJ mol <sup>-1</sup> | $\lg(A_1 / \mathrm{s}^{-1})$ | $f(\alpha)$ | $E_{a2}$ / kJ mol <sup>-1</sup> | $lg(A_2/s^{-1})$ | $f(\alpha)$ |               |               |
|      | DTG    | 2                            | 350 ± 18                        | $37.2 \pm 2.0$               | F3          | 134 ± 4                         | $11.5 \pm 0.5$   | Fl          | $0.07\pm0.06$ | -             |
| 1    | DTG    | 1                            | 135 ± 3                         | $11.6 \pm 0.4$               | Fl          | -                               |                  | -           | -             | -             |
| 1    | DSC    | 2 (+, -) <sup><i>a</i></sup> | 116 ± 2                         | $9.7\pm0.2$                  | Fl          | $169 \pm 2$                     | $15.4 \pm 0.2$   | L2          | -             | $1.32\pm0.03$ |
|      | DSC    | 2 (+, +)                     | 182 ± 4                         | $17.5 \pm 0.4$               | D4          | $162 \pm 12$                    | 14 ± 1.3         | A3          | -             | 0.6 ± 0.2     |
| 2    | DTG    | 2                            | $115 \pm 0.01$                  | $10.4\pm0.001$               | Fl          | $115 \pm 0.03$                  | $9.4\pm0.003$    | Fl          | 0.45          | -             |
| 2    | DSC    | 2 (+, -)                     | $115 \pm 0.07$                  | $10.4\pm0.008$               | Fl          | $115 \pm 0.07$                  | $9.4\pm0.008$    | <i>R3</i>   | -             | 1.99          |
|      | DTG    | 2                            | 177 ± 6                         | $16.6 \pm 0.7$               | Fl          | $148 \pm 25$                    | $12.9 \pm 2.7$   | Fl          | $0.43\pm0.08$ | -             |
| 3    | DTG    | 1                            | 188 ± 2                         | $17.5 \pm 0.3$               | <i>F2</i>   | -                               |                  | -           | -             | -             |
|      | DSC    | 2 (+, -)                     | $178 \pm 6$                     | $16.7 \pm 0.7$               | Fl          | $147 \pm 13$                    | $12.7 \pm 1.4$   | <i>R3</i>   | -             | $2.0\pm0.2$   |
|      | DTG    | 2                            | $115 \pm 1.0$                   | 9.5 ± 0.1                    | L2          | $115 \pm 0.1$                   | $10.3 \pm 0.01$  | Fl          | 0.03          | -             |
| 4    | DTG    | 1                            | $115 \pm 0.03$                  | $9.5 \pm 0.004$              | Fl          | -                               |                  | -           | -             | -             |
| Т    | DSC    | 2 (+, -)                     | $115 \pm 0.1$                   | $9.5\pm0.01$                 | Fl          | $115 \pm 0.6$                   | $10 \pm 0.07$    | Fl          | -             | 1.15          |
|      | DSC    | 1                            | $115 \pm 0.01$                  | $9.5\pm0.001$                | Fl          | -                               |                  | -           | -             | -             |

**Table S2.** Results of the kinetic analysis on the deconvoluted peaks

<sup>*a*</sup> Supposed exothermic peaks denoted as "+", endothermic as "-".

 Table S3. Summary of the results of the kinetic deconvolution analysis

| Input data: DSC                     |        |         |        |             |        |         |        |         |
|-------------------------------------|--------|---------|--------|-------------|--------|---------|--------|---------|
| Case 1                              |        | se 1    | Case 2 |             | Case 3 |         | Case 4 |         |
| Parameter                           | Value  | ± Error | Value  | ± Error     | Value  | ± Error | Value  | ± Error |
| $lg(A_1/s^{-1})$                    | 10.7   | 0.2     | 10.4   | 0.0         | 16.8   | 0.1     | 9.4    | 0.1     |
| $E_{a1}$ / kJ mol <sup>-1</sup>     | 124.0  | 1.5     | 115    | 0.0         | 177.9  | 0.4     | 115.0  | 0.7     |
| $n_1$                               | 1.21   | 0.01    | 1.03   | 0.00        | 1.00   | 0.00    | 0.96   | 0.01    |
| $m_1$                               | 0.06   | 0.01    | 0.00   | 0.00        | 0.01   | 0.00    | -0.12  | 0.01    |
| $lg(A_2/s^{-1})$                    | 13.4   | 0.2     | 9.4    | 0.0         | 11.3   | 0.1     | 10.0   | 0.7     |
| $E_{a2}$ / kJ mol <sup>-1</sup>     | 148.8  | 2.0     | 115    | 0.1         | 132.6  | 0.5     | 115.8  | 6.4     |
| $n_2$                               | 1.22   | 0.02    | 1.02   | 0.00        | 1.10   | 0.01    | 2.00*  | 0.52    |
| $m_2$                               | 0.27   | 0.02    | -0.01  | 0.00        | 0.14   | 0.02    | 0.86   | 0.07    |
| γ                                   | 1.88   | 0.1     | 2.12   | 0.00        | 2.08   | 0.02    | 1.02*  | 0.01    |
| Input data: DTG                     |        |         |        |             |        |         |        |         |
|                                     | Cas    | se 1    | Case 2 | Case 3      |        |         | Case 4 |         |
| Parameter                           | Value  | ± Error | Value  | ± Error     | Value  | ± Error | Value  | ± Error |
| $lg(A_1/s^{-1})$                    | 16.2   | 0.3     | 10.4   | 0.0         | 18.9   | 0.1     | 22.0   | 3.7     |
| $E_{a1}$ / kJ mol <sup>-1</sup>     | 174.4  | 3.0     | 114.8  | 0.1         | 198.3  | 1.1     | 236    | 36      |
| $n_1$                               | 1.48   | 0.09    | 1.02   | 0.00        | 1.17   | 0.00    | 0.85   | 0.08    |
| $m_1$                               | 0.42   | 0.01    | 0.00   | 0.00        | -0.03  | 0.00    | -1.0   | 0.5     |
| $lg(A_2/s^{-1})$                    | 10.0   | 0.1     | 9.4    | 0.0         | 11.0   | 0.0     | 9.5    | 0.2     |
| $E_{\rm a2}$ / kJ mol <sup>-1</sup> | 119.6  | 0.8     | 114.7  | 0.1         | 129.7  | 0.4     | 114.5  | 1.5     |
| $n_2$                               | 1.03   | 0.01    | 1.02   | 0.00        | 1.09   | 0.00    | 1.03   | 0.02    |
| $m_2$                               | 0.15   | 0.01    | -0.01  | 0.00        | 0.20   | 0.01    | 0.05   | 0.03    |
| η                                   | 0.15   | 0.02    | 0.44   | 0.00        | 0.50   | 0.01    | 0.10*  | 0.02    |
| Input data: DSC+I                   | DTG    |         |        |             |        |         |        |         |
|                                     | Case 1 |         | Case 2 |             | Case 3 |         | Case 4 |         |
| Parameter                           | Value  | ± Error | Value  | $\pm Error$ | Value  | ± Error | Value  | ± Error |
| $lg(A_1/s^{-1})$                    | 12.4   | 0.5     | 10.4   | 0.0         | 16.9   | 0.1     | 9.4    | 0.1     |
| $E_{a1}$ / kJ mol <sup>-1</sup>     | 141.4  | 4.6     | 114.7  | 0.0         | 179.0  | 0.7     | 114.0  | 0.8     |
| $n_1$                               | 1.41   | 0.07    | 1.02   | 0.00        | 1.03   | 0.01    | 1.00   | 0.00    |
| $m_1$                               | 0.07   | 0.04    | -0.00  | 0.00        | 0.02   | 0.00    | 0.02   | 0.01    |
| $lg(A_2/s^{-1})$                    | 15.0   | 0.7     | 9.4    | 0.0         | 11.6   | 0.1     | 17.7   | 4.1     |
| $E_{\rm a2}$ / kJ mol <sup>-1</sup> | 164.9  | 6.9     | 114.7  | 0.0         | 134.7  | 1.0     | 193.6  | 38.5    |
| $n_2$                               | 2*     | 0.14    | 1.02   | 0.00        | 1.22   | 0.02    | 2*     | 0.49    |
| $m_2$                               | 0.33   | 0.05    | -0.00  | 0.00        | 0.22   | 0.02    | -1*    | 0.34    |
| γ                                   | 2.77   | 0.68    | 2.11   | 0.00        | 2.09   | 0.02    | 0.86   | 0.04    |
| n                                   | 0.99*  | 0.13    | 0.44   | 0.00        | 0.45   | 0.01    | 0.99*  | 0.02    |

\*limit during optimization

| Input data: DSC                     |               |             |        |             |        |             |        |             |
|-------------------------------------|---------------|-------------|--------|-------------|--------|-------------|--------|-------------|
|                                     | Case 1 Case 2 |             | Case 3 |             | Case 4 |             |        |             |
| Parameter                           | Value         | $\pm Error$ | Value  | $\pm Error$ | Value  | $\pm Error$ | Value  | $\pm Error$ |
| $lg(A_1/s^{-1})$                    | 9.9           | 0.0         | 10.3   | 0.0         | 17.2   | 0.0         | 9.4    | 0.0         |
| $E_{a1}$ / kJ mol <sup>-1</sup>     | 118.7         | 0.3         | 113.7  | 0.1         | 182.0  | 0.1         | 114.0  | 0.2         |
| $lg(A_2/s^{-1})$                    | 17.0          | 0.1         | 9.4    | 0.0         | 10.2   | 0.1         | 9.6    | 0.1         |
| $E_{a2}$ / kJ mol <sup>-1</sup>     | 180.2         | 0.6         | 115.1  | 0.2         | 121.6  | 0.5         | 103.5  | 1.4         |
| γ                                   | 1.99          | 0.02        | 1.98   | 0.00        | 1.96   | 0.00        | 1.73   | 0.03        |
| Input data: DTG                     |               |             |        |             |        |             |        |             |
|                                     | Case 1        |             | Case 2 |             | Case 3 |             | Case 4 |             |
| Parameter                           | Value         | $\pm Error$ | Value  | $\pm Error$ | Value  | $\pm Error$ | Value  | ± Error     |
| $lg(A_1/s^{-1})$                    | 9.8           | 0.0         | 10.2   | 0.0         | 17.2   | 0.0         | 10.9   | 0.2         |
| $E_{\rm a1}$ / kJ mol <sup>-1</sup> | 118.1         | 0.3         | 113.4  | 0.1         | 181.8  | 0.2         | 114.7  | 2.0         |
| $lg(A_2/s^{-1})$                    | 17.6          | 0.2         | 9.2    | 0.0         | 9.8    | 0.0         | 9.3    | 0.0         |
| $E_{a2}$ / kJ mol <sup>-1</sup>     | 185.4         | 1.5         | 112.5  | 0.1         | 118.0  | 0.3         | 113.2  | 0.1         |
| η                                   | 0.51          | 0.01        | 0.50   | 0.00        | 0.50   | 0.00        | 0.02   | 0.00        |
| Input data: DSC+I                   | DTG           |             |        |             |        |             |        |             |
|                                     | Case 1        |             | Case 2 |             | Case 3 |             | Case 4 |             |
| Parameter                           | Value         | $\pm Error$ | Value  | $\pm Error$ | Value  | $\pm Error$ | Value  | ± Error     |
| $lg(A_1/s^{-1})$                    | 10.0          | 0.0         | 10.3   | 0.0         | 17.4   | 0.0         | 11.2   | 0.1         |
| $E_{\rm a1}$ / kJ mol <sup>-1</sup> | 119.8         | 0.1         | 114.3  | 0.0         | 183.7  | 0.1         | 117.0  | 0.5         |
| $lg(A_2/s^{-1})$                    | 17.2          | 0.0         | 9.3    | 0.0         | 9.8    | 0.0         | 9.4    | 0.0         |
| $E_{a2}$ / kJ mol <sup>-1</sup>     | 182.4         | 0.3         | 114.5  | 0.1         | 118.4  | 0.2         | 114.3  | 0.0         |
| γ                                   | 2.05          | 0.01        | 1.98   | 0.00        | 1.97   | 0.00        | 0.07   | 0.00        |
| η                                   | 0.52          | 0.00        | 0.50   | 0.00        | 0.50   | 0.00        | 0.02   | 0.00        |

**Table S4.** Summary of the results of the formal kinetic analysis with the kinetic scheme as two consecutive first-order reactions

Table S5. Bayes information criteria for the formal kinetic fit of case 3 data with several reaction schemes

| Kinetic scheme                  | DSC data | DTG data | DSC+DTG data |
|---------------------------------|----------|----------|--------------|
| Single-step reaction            | -8757    | -12626   | -18090       |
| Two parallel reactions          | -8689    | -12606   | -17920       |
| Two consecutive reactions       | -18399   | -19326   | -36714       |
| Two independent reactions (KDA) | -15326   | -16331   | -28324       |



**Figure S11.** Formal kinetic and KDA fit (red lines) of data for Case 1 (points). (a) fit of DSC data with two independent Bna reactions, (b) fit of DTG data with two independent Bna reactions, (c, d) fit of DSC and DTG data with two independent Bna reactions, (e, f) fit of DSC and DTG data with two consecutive Bna reactions.



**Figure S12.** Formal kinetic and KDA fit (red lines) of data for Case 3 (points). (a) fit of DSC data with two independent Bna reactions, (b) fit of DTG data with two independent Bna reactions, (c, d) fit of DSC and DTG data with two independent Bna reactions, (e, f) fit of DSC and DTG data with two consecutive Bna reactions.



**Figure S13.** Linear dependence between  $\lg A$  and  $E_a$  observed for the kinetic parameters calculated using various methods for the simulated kinetic rate data (Case 3).