Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Sago Hampas
2.2. Preliminary Experiment: Bioelectricity Generation from Commercial Starch
2.3. Direct Bioelectricity Generation by Clostridium beijerinckii SR1 Using Sago Hampas
3. Materials and Methods
3.1. Substrate Collection and Preparation
3.2. Hydrolysis of Sago Hampas
3.3. Bacterial Strain and Medium
3.4. MFC Construction and Operation
3.5. Calculation and Chemical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ivars-Barceló, F.; Zuliani, A.; Fallah, M.; Mashkour, M.; Rahimnejad, M.; Luque, R. Novel Applications of Microbial Fuel Cells in Sensors and Biosensors. Appl. Sci. 2018, 8, 1184. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: from fundamentals to applications. A review. J. Power 2017, 356, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Logan, B. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 2009, 7, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Hampannavar, U.S.; Anupama, S.; Pradeep, N.V. Treatment of distillery wastewater using single chamber and double chambered MFC. Int. J. Environ. Sci. 2011, 2, 114–123. [Google Scholar]
- Włodarczyk, P.P.; Włodarczyk, B. Microbial fuel cell with ni-co cathode powered with yeast wastewater. Energies 2018, 11, 3194. [Google Scholar] [CrossRef]
- Logan, B.E. Microbial Fuel Cell; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010, 101, 1533–1543. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhang, S.; Su, Z. Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem. Eng. J. 2009, 45, 185–191. [Google Scholar] [CrossRef]
- Pandey, P.; Shinde, V.N.; Deopurkar, R.L.; Kale, S.P.; Patil, S.A.; Pant, D. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 2016, 168, 706–723. [Google Scholar] [CrossRef]
- Du, H.; Li, F. Effects of varying the ratio of cooked to uncooked potato on the microbial fuel cell treatment of common potato waste. Sci. Total Environ. 2016, 569–570, 841–849. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; Gad El-Rab, S.M.F.; Rahimnejad, M.; Ghasemi, M.; Joo, J.H.; Sik-Ok, Y.; Kim, I.S.; Oh, S.E. Electricity generation from rice straw using a microbial fuel cell. Int. J. Hydrogen Energy 2014, 39, 9490–9496. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, B.; Huang, L.; Angelidaki, I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells. Appl. Environ. Microbiol. 2009, 75, 3389–3395. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Maness, P.C.; Logan, B.E. Electricity production from steam-exploded corn stover biomass. Energy Fuels 2006, 20, 1716–1721. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Y.; Wang, H.; Qu, Y.; Yu, Y.; Ren, N.; Li, N.; Wang, E.; Lee, H.; Logan, B.E. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ. Sci. Technol. 2009, 43, 6088–6093. [Google Scholar] [CrossRef] [PubMed]
- Awg-Adeni, D.S.; Abd-Aziz, S.; Bujang, K.B.; Hassan, M.A. Bioconversion of sago residue into value added products. Afr. J. Biotechnol. 2010, 9, 2016–2021. [Google Scholar]
- Department of Agriculture Sarawak. Sarawak Agriculture Statistics. 2013. Available online: http://www.doa.sarawak.gov.my/modules/web/pages.php?mod=webpage&sub=page&id=712 (accessed on 16 August 2017).
- Awg-Adeni, D.S.; Bujang, K.B.; Hassan, M.A.; Abd-Aziz, S. Recovery of glucose from residual starch of sago hampas for bioethanol production. Biomed. Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed]
- Jenol, M.A.; Ibrahim, M.F.; Yee, P.L.; Md Salleh, M.; Abd-Aziz, S. Sago biomass as a sustainable source for biohydrogen production by Clostridium butyricum A1. BioResources 2014, 9, 1007–1026. [Google Scholar] [CrossRef]
- Linggang, S.; Yee, P.L.; Wasoh, M.H.; Abd-Aziz, S. Sago pith residue as an alternative cheap substrate for fermentable sugars production. Appl. Biochem. Biotechnol. 2012, 167, 122–131. [Google Scholar] [CrossRef]
- Niessen, J.; Schroder, U.; Scholz, F. Exploiting complex carbohydrates for microbial electricity generation—A bacterial fuel cell operating on starch. Electrochem. Commun. 2004, 6, 955–958. [Google Scholar] [CrossRef]
- Ahmed, S.; Rozaik, E.; Abdelhalim, H. Performance of Single-Chamber Microbial Fuel Cells Using Different Carbohydrate-Rich Wastewaters and Different Inocula. Pol. J. Environ. Stud. 2016, 25, 503–510. [Google Scholar] [CrossRef]
- Liu, J.; Guo, T.; Wang, D.; Ying, H. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnol. Lett. 2015, 37, 95–100. [Google Scholar] [CrossRef]
- Sun, G.; Thygesen, A.; Meyer, A.S. Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Appl. Microbiol. Biotechnol. 2015, 99, 4905–4915. [Google Scholar] [CrossRef] [PubMed]
- Maddox, I.S.; Steiner, E.; Hirsch, S.; Wessner, S.; Gutierrez, N.A.; Gapes, J.R.; Schuster, K.C. The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. J. Mol. Microbiol. Biotechnol. 2000, 2, 95–100. [Google Scholar] [PubMed]
- Min, B.; Kim, J.R.; Oh, S.E.; Regan, J.M.; Logan, B.E. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 2005, 39, 4961–4968. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, F.; Chang, J.D.; Mizukami, N.; Saito-Taki, T.; Hasegawa, K.; Morimoto, M. Isolation of hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B, from termites. Can. J. Microbiol. 1983, 39, 726–730. [Google Scholar] [CrossRef]
- Taguchi, F.; Mizukami, N.; Saito-Taki, T.; Hasegawa, K. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2. Can. J. Microbiol. 1995, 41, 536–540. [Google Scholar] [CrossRef]
- Levin, D.B.; Pitt, L.; Love, M. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrogen Energy 2004, 29, 173–185. [Google Scholar] [CrossRef]
- Finch, A.S.; Mackie, T.D.; Sund, C.J.; Sumner, J.J. Metabolite analysis of Clostridium acetobutylicum: Fermentation in a microbial fuel cell. Bioresour. Technol. 2011, 102, 312–315. [Google Scholar] [CrossRef]
- Myers, C.R.; Myers, J.M. Localization of Cytochromes to the Outer-Membrane of Anaerobically Grown Shewanella-Putrefaciens Mr-1. J. Bacteriol. 1992, 174, 3429–3438. [Google Scholar] [CrossRef]
- Krige, A.; Sjöblom, M.; Ramser, K.; Christakopoulos, P.; Rova, U. On-line Raman spectroscopic study of cytochromes’ redox state of biofilms in microbial fuel cells. Molecules 2019, 24, 646. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, S.; Zhuang, L.; Zhang, J.; Ni, J. Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J. 2009, 43, 246–251. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Md Salleh, M. Application of Fed Batch System in The Production of Biobutanol by Clostridium sp. Using Lemongrass Leaves Hydrolysate. Korean Biotechnol. Conf. 2016, 2016, 12. [Google Scholar]
- Oh, S.E.; Min, B.; Logan, B.E. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 2004, 38, 4900–4904. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, L.K. Lactorbacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol. 1981, 31, 56–63. [Google Scholar] [CrossRef]
- Oh, S.E.; Logan, B.E. Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl. Microbiol. Biotechnol. 2006, 70, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Mu, W.; Liu, M.; Zhang, X.; Cai, H.; Deng, Y. Solar-induced direct biomass-to-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier. Nat. Commun. 2014, 5, 1–8. [Google Scholar]
Sample Availability: Samples of the hydrolyzed and unhydrolyzed sago hampas available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenol, M.A.; Ibrahim, M.F.; Kamal Bahrin, E.; Kim, S.W.; Abd-Aziz, S. Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell. Molecules 2019, 24, 2397. https://doi.org/10.3390/molecules24132397
Jenol MA, Ibrahim MF, Kamal Bahrin E, Kim SW, Abd-Aziz S. Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell. Molecules. 2019; 24(13):2397. https://doi.org/10.3390/molecules24132397
Chicago/Turabian StyleJenol, Mohd Azwan, Mohamad Faizal Ibrahim, Ezyana Kamal Bahrin, Seung Wook Kim, and Suraini Abd-Aziz. 2019. "Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell" Molecules 24, no. 13: 2397. https://doi.org/10.3390/molecules24132397
APA StyleJenol, M. A., Ibrahim, M. F., Kamal Bahrin, E., Kim, S. W., & Abd-Aziz, S. (2019). Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell. Molecules, 24(13), 2397. https://doi.org/10.3390/molecules24132397