Pesticide Residues Identification by Optical Spectrum in the Time-Sequence of Enzyme Inhibitors Performed on Microfluidic Paper-Based Analytical Devices (µPADs)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Wavelength Selection (for Manual Analysis)
2.2. Averaged Time-Change Rate of Pesticides
2.3. Repetitive Assays
2.4. Identification of Pesticide by Time-Sequence Optical Spectrum Model
2.5. Effective Evaluation of the Proposed Time-Sequence Model
2.6. Sensitivity Evaluation of the Proposed Time-Sequence Model
2.7. Real-World Analysis and Comparison with Conventional Methods
3. Materials and Methods
3.1. Design of Microfluidic Chip
3.2. Enzyme-Inhibitor Based Determination
3.3. Principle of Identification by Chromogenic Molecules
3.4. Pesticide Distinguish Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guo, X.; Zhang, X.; Cai, Q.; Shen, T.; Zhu, S.M. Developing a novel sensitive visual screening card for rapid detection of pesticide residues in food. Food Control. 2013, 30, 15–23. [Google Scholar] [CrossRef]
- Han, Z.; Chi, C.; Bai, B.; Liu, G.; Rao, Q.X.; Peng, S.J.; Liu, H.; Zhao, Z.H.; Zhang, D.B.; Wu, A.B. Chromogenic platform based on recombinant Drosophila melanogaster acetylcholinesterase for visible unidirectional assay of organophosphate and carbamate insecticide residues. Anal. Chim. Acta 2012, 720, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Brenda, E.; Marks, A.R.; Asa, B.; Kim, H.; Barr, D.B.; Caroline, J.; Norma, M.; Nicholas, P.J. Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children. Environ. Health Persp. 2007, 115, 792–798. [Google Scholar]
- Malarkodi, C.; Rajeshkumar, S.; Annadurai, G. Detection of environmentally hazardous pesticide in fruit and vegetable samples using Gold Nanoparticles. Food Control. 2017, 80, 11–18. [Google Scholar] [CrossRef]
- Lozowicka, B. Health risk for children and adults consuming apples with pesticide residue. Sci. Total Environ. 2015, 502, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Cantor, K.P.; Blair, A.; Everett, G.; Gibson, R.; Burmeister, L.F.; Brown, L.M.; Schuman, L.; Dick, F.R. Pesticides and Other Agricultural Risk factors for Non-Hodgkin’s Lymphoma among Men in Iowa and Minnesota. Cancer Res. 1992, 52, 2447–2455. [Google Scholar] [PubMed]
- Alves, S.A.; Ferreira, T.R.; Migliorini, F.L.; Baldan, M.R.; Ferreira, N.G.; Lanza, M.V. Electrochemical degradation of the insecticide methyl parathion using a boron-doped diamond film anode. J. Electroanal. Chem. 2013, 702, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Wu, J.; Liu, W. Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. Trends Anal. Chem. 2009, 28, 1148–1163. [Google Scholar] [CrossRef]
- Jon, W.W.; Kai, Z.; Katherine, T.; Douglas, G.H.; Carolyn, M.M.; Alexander, J.K.; Frank, J.S.; Kaushik, B.; Soma, D.; Don, B. Multiresidue Pesticide Analysis in Fresh Produce by Capillary Gas Chromatography−Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) and −Tandem Mass Spectrometry (GC-MS/MS). J. Agric. Food Chem. 2010, 58, 5868–5883. [Google Scholar]
- Venkateswarlu, P.; Mohan, K.R.; Kumar, C.R.; Seshaiah, K. Monitoring of multi-class pesticide residues in fresh grape samples using liquid chromatography with electrospray tandem mass spectrometry. Food Chem. 2007, 105, 1760–1766. [Google Scholar] [CrossRef]
- Vetrova, E. A bioluminescent signal system: detection of chemical toxicants in water. J. Biol. Chem. Lumin. 2007, 22, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Yaoyao, Z.; Yingxin, M.; Hao, L.; Leyu, W. Composite QDs@MIP Nanospheres for Specific Recognition and Direct Fluorescent Quantification of Pesticides in Aqueous Media. Anal. Chem. 2012, 84, 386–395. [Google Scholar]
- Liu, G.; Lin, Y. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 2005, 77, 5894–5901. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Lee, S.; Seong, G.H.; Choo, J.; Lee, E.K.; Gweon, D.G.; Lee, S. Quantitative Analysis of Methyl Parathion Pesticides in a Polydimethylsiloxane Microfluidic Channel Using Confocal Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2006, 60, 373. [Google Scholar] [CrossRef] [PubMed]
- Kanakasabapathy, M.K.; Sadasivam, M.; Singh, A.; Preston, C.; Thirumalaraju, P.; Venkataraman, M.; Bormann, C.L.; Draz, M.S.; Petrozza, J.C.; Shafiee, H. An automated smartphone-based diagnostic assay for point-of-care semen analysis. Sci. Transl. Med. 2017, 9, 7863. [Google Scholar] [CrossRef] [PubMed]
- Duford, D.A.; Xi, Y.; Salin, E.D. enzyme inhibition-Based Determination of pesticide residues in Vegetable and Soil in Centrifugal Microfluidic Devices. Anal. Chem. 2013, 85, 7834–7841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, X.; Jia, M.F.; Li, B.W.; Rong, J.H.; Yang, X.B. Deposition of CdTe quantum dots on microfluidic paper chips for rapid fluorescence detection of pesticide 2,4-D. Analyst 2019, 144, 1282–1291. [Google Scholar] [CrossRef]
- Wang, J.; Satake, T.; Suzuki, H. Microfluidic Device for Coulometric Detection of Organophosphate Pesticides. Anal. Sci. 2015, 31, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Montes, R.; Céspedes, F.; Baeza, M. Determination of Pesticides Using a Low-Temperature Cofired Ceramic Microfluidic Platform. Instrum. Sci. Technol. 2017, 46, 76–92. [Google Scholar]
- Bagheri, H.; Allahdadlalouni, M.; Zamani, C. Toward a comprehensive microextraction/determination unit: A chip silicon rubber polyaniline-based system and its direct coupling with gas chromatography and mass spectrometry. J. Sep. Sci. 2016, 39, 4227–4233. [Google Scholar] [CrossRef]
- Yang, N.; Wang, P.; Xue, C.Y.; Sun, J.; Mao, H.P.; Paul, K.O. A portable detection method for organophosphorus and carbamates pesticide residues based on multilayer paper chip. J. Food Process. Eng. 2018, 41, e12867. [Google Scholar] [CrossRef]
- Guo, J.; Wong, J.X.H.; Cui, C.E.; Li, X.C.; Yu, H.Z. A smartphone-readable barcode assay for the detection and quantitation of pesticide residues. Analyst 2015, 140, 5518–5525. [Google Scholar] [CrossRef]
- Yang, N.; Xie, L.L.; Pan, C.; Yuan, M.F.; Tao, Z.H.; Mao, H.P. A novel on-chip solution enabling rapid analysis of melamine and chloramphenicol in milk by smartphones. J. Food Process Eng. 2019, 42, e12976. [Google Scholar] [CrossRef]
- Villringer, A. Non-invasive optical spectroscopy and imaging of human brain function. Trend Neurosci. 1997, 20, 435–442. [Google Scholar] [CrossRef]
- Daohan, G.; Jianpei, S.; Ahmed, R.; Yuan, Z.; Jinxiu, W.; Liqiang, Z.; Shining, Z. Optical Fano resonance sensing of bilayer asymmetric photonic crystal slabs as biosensors. Appl. Opt. 2019, 58, 3187–3192. [Google Scholar]
- Shah, N.; Cerussi, A.; Eker, C.; Espinoza, J.; Butler, J.; Fishkin, J.; Hornung, R.; Tromberg, B. Noninvasive functional optical spectroscopy of human breast tissue. Proc. Natl. Acad. Sci. USA 2001, 98, 4420–4425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhao, G.H.; Pang, Y.N.; Lei, Y.Z.; Gao, J.X.; Liu, M.C. Integrated Biological and Electrochemical Oxidation Treatment for High Toxicity Pesticide Pollutant. Ind. Eng. Chem. Res. 2010, 49, 5496–5503. [Google Scholar] [CrossRef]
- Sherwood, S.G.; Paredes, M. Dynamics of Perpetuation: The Politics of Keeping Highly Toxic Pesticides on the Market in Ecuador. Nat. Cult. 2014, 9, 21–44. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, R.K.; Gaur, M.S. Three-dimensional structure prediction and proton nuclear magnetic resonance analysis of toxic pesticides in human blood plasma. J. Biomed. Res. 2012, 26, 170–184. [Google Scholar] [CrossRef]
- Wang, J.L.; Xia, Q.; Zhang, A.P.; Hu, X.Y.; Lin, C.M. Determination of organophosphorus pesticide residues in vegetables by an enzyme inhibition method using α-naphthyl acetate esterase extracted from wheat flour. J. Zhejiang Univ. Sci. B. 2012, 13, 237–273. [Google Scholar] [CrossRef]
- Hemaprasanth, K.P.; Kar, B.; Garnayak, S.K.; Mohanty, J.; Jena, J.K.; Sahoob, P.K. Efficacy of two avermectins, doramectin and ivermectin against Argulus siamensis infestation in Indian major carp, Labeo rohita. Vet. Parasitol. 2012, 190, 297–304. [Google Scholar] [CrossRef] [PubMed]
- José, R.P. The efficiency of avermectins (abamectin, doramectin and ivermectin) in the control of Boophilus microplus, in artificially infested bovines kept in field conditions. Vet. Parasitol. 2009, 162, 116–119. [Google Scholar]
- Renáta, H.; Eva, M.; Kirchner, M. Fast GC–MS Pesticide Multiresidue Analysis of Apples. Chromatographia 2008, 68, 49–55. [Google Scholar]
- HansJürgen, S. Pesticide residue analysis in foodstuffs applying capillary gas chromatography with mass spectrometric detection - State-of-the-art use of modified DFG-multimethod S19 and automated data evaluation. J. Chromatogr. A 2000, 892, 347–377. [Google Scholar]
- Lina, H.; Sathya, K.; Jeong-Heui, C.; Morgan, E.D.; Abd, A.M.; Jae-Han, S. Determination of Trichlorfon Pesticide Residues in Milk via Gas Chromatography with μ-Electron Capture Detection and GC-MS. Toxicol. Res. 2010, 26, 149–155. [Google Scholar]
- Landragin, A.; Courtois, J.Y.; Labeyrie, G.; Vansteenkiste, N.; Westbrook, C.I.; Aspect, A. Measurement of the van der Waals Force in an Atomic Mirror. Phys. Rev. Lett. 1996, 77, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Shaheen, N.; Xie, L.; Yu, J.; Ahmad, H.; Mao, H. Pesticide Residues Identification by Optical Spectrum in the Time-Sequence of Enzyme Inhibitors Performed on Microfluidic Paper-Based Analytical Devices (µPADs). Molecules 2019, 24, 2428. https://doi.org/10.3390/molecules24132428
Yang N, Shaheen N, Xie L, Yu J, Ahmad H, Mao H. Pesticide Residues Identification by Optical Spectrum in the Time-Sequence of Enzyme Inhibitors Performed on Microfluidic Paper-Based Analytical Devices (µPADs). Molecules. 2019; 24(13):2428. https://doi.org/10.3390/molecules24132428
Chicago/Turabian StyleYang, Ning, Naila Shaheen, Liangliang Xie, Junjie Yu, Hussain Ahmad, and Hanping Mao. 2019. "Pesticide Residues Identification by Optical Spectrum in the Time-Sequence of Enzyme Inhibitors Performed on Microfluidic Paper-Based Analytical Devices (µPADs)" Molecules 24, no. 13: 2428. https://doi.org/10.3390/molecules24132428
APA StyleYang, N., Shaheen, N., Xie, L., Yu, J., Ahmad, H., & Mao, H. (2019). Pesticide Residues Identification by Optical Spectrum in the Time-Sequence of Enzyme Inhibitors Performed on Microfluidic Paper-Based Analytical Devices (µPADs). Molecules, 24(13), 2428. https://doi.org/10.3390/molecules24132428