Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities
Abstract
:1. Introduction
2. Acquisition of G. elata Polysaccharides
2.1. Extraction of G. elata Polysaccharides
2.2. Purification of G. elata Polysaccharides
3. Analysis of G. elata Polysaccharides
3.1. Qualitative Analysis of G. elata Polysaccharides
3.2. Quantitative Analysis of G. elata Polysaccharides
4. Modification of G. elata Polysaccharides
5. Pharmacological Activities and Functions of G. elata Polysaccharides
5.1. Anti-Cancer Activities
5.2. Antioxidation Activities
5.3. Immunological Activities
5.4. Neuroprotection Activities
5.5. Cardiovascular System Activities
5.6. Other Functions
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Huang, G.L. The chemical composition, pharmacological effects, clinical applications and market analysis of Gastrodia elata. Pharm. Chem. J. 2017, 51, 211–215. [Google Scholar] [CrossRef]
- Hsieh, C.L.; Lin, J.J.; Chiang, S.Y.; Su, S.Y.; Tang, N.Y.; Lin, G.G.; Lin, I.H.; Liu, C.H.; Hsiang, C.Y.; Chen, J.C.; et al. Gastrodia elata modulated activator protein 1 via c-Jun N-terminal kinase signaling pathway in kainic acid-induced epilepsy in rats. J. Ethnopharmacol. 2007, 109, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Lee, D.U. A new citryl glycoside from Gastrodia elata and its inhibitory activity on GABA transaminase. Chem. Pharm. Bull. 2006, 54, 1720–1721. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gong, X.J.; Zhou, X.; Kang, Z.J. Relative bioavailability of gastrodin and parishin from extract and powder of Gastrodiae rhizoma in rat. J. Pharm. Biomed. Anal. 2014, 100, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Matias, M.; Silvestre, S.; Falcão, A.; Alves, G. Gastrodia elata and epilepsy: Rationale and therapeutic potential. Phytomedicine 2016, 23, 1511–1526. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.H.; Qiao, N.; Piye, N.; Ming, W.H.; Xiao, S.S.; Feng, S.; Sheng, W.; Opler, M. Protective effects of Gastrodia elata on aluminium-chloride-induced learning impairments and alterations of amino acid neurotransmitter release in adult rats. Restor. Neurol. Neurosci. 2008, 26, 467–473. [Google Scholar]
- Hayashi, J.; Sekine, T.; Deguchi, S.; Lin, Q.; Horie, S.; Tsuchiya, S.; Yano, S.; Watanabe, K.; Ikegami, F. Phenolic compounds from Gastrodia rhizome and relaxant effects of related compounds on isolated smooth muscle preparation. Phytochemistry 2002, 59, 513–519. [Google Scholar] [CrossRef]
- Liu, C.Y. The changes of the polysaccharide and its distribution in the development process of Gastrodia elate. Acta Botanic. Yunnan 1981, 3, 375–380. [Google Scholar]
- Liu, X.H.; Guo, X.N.; Zhan, J.P.; Xie, Z.L.; Wang, J.M.; Zhang, Y.T.; Chen, Y.L.; Li, X.B. The effects of polysaccharide from Gastrodia elata B1 on cell cycle and caspase proteins activity in H22 tumor bearing mice. Chin. J. Gerontol. 2015, 20, 5681–5682. [Google Scholar]
- Qiu, H.; Tang, W.; Tong, X.K.; Ding, K.; Zuo, J.P. Structure elucidation and sulfated derivatives preparation of two α-d-glucans from Gastrodia elata. and their anti-dengue virus bioactivities. Carbohydr. Res. 2007, 342, 2230–2236. [Google Scholar] [CrossRef]
- Chen, C.; Qin, Y.; Fang, J.P.; Ni, X.Y.; Yao, J.; Wang, H.Y.; Ding, K. WSS25, a sulfated polysaccharide, inhibits RANKL-induced mouse osteoclast formation by blocking SMAD/ID1 signaling. Acta Pharmacol. Sin. 2015, 36, 1053–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Mori, A. Antioxidant and free radical scavenging activities of Gastrodia elata Bl. and Uncaria rhynchophylla (Miq.) Jacks. Neuropharmacology 1992, 31, 1287–1298. [Google Scholar] [CrossRef]
- Bao, Q.W.; Qian, L.; Gong, C.; Shen, X.Z. Immune-enhancing activity of polysaccharides from Gastrodia elata. J. Food. Process. Pres. 2017, 41, e13016. [Google Scholar] [CrossRef]
- Ming, J.; Zeng, K.F.; Wu, S.R.; Fu, A.L.; Zhao, G.H.; Gui, M.Y.; Chen, Z.D. Effect of soluble polysaccharide PGEB-3-H from Gastrodia elataume on scopolamine-induced learning and memory disorders in Mice. J. Food Sci. 2010, 31, 246–249. [Google Scholar]
- Miao, H.C.; Shen, Y.S. Antihypertensive effect of polysaccharides substracted from Gastrodia elataume. Chin. J. Hypertension 2006, 14, 531–534. [Google Scholar]
- Ju, Y.; Xue, Y.; Huang, J.; Zhai, Q.; Wang, X.H. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells. Int. J. Biol. Macromol. 2014, 66, 81–85. [Google Scholar] [CrossRef]
- Lou, X.; Huang, Y.; Guo, X.; Zheng, F.; Jiang, Z.; Yang, Y.P. Polysaccharides from Portulaca oleracea (purslane) supplementation lowers acute exercise induced oxidative stress in young rats. Afr. J. Pharm. Pharmacol. 2011, 5, 381–385. [Google Scholar]
- Shu, X.; Liu, X.; Fu, C.; Liang, Q. characterization and antitumor effect of the polysaccharides from star anise (Illicium verum Hook. f.). J. Med. Plants Res. 2010, 4, 2666–2673. [Google Scholar]
- Wang, L.; Wang, Z.; Zhag, J.; Tang, Z.S.; Sun, X.C.; Song, Z.X.; Huang, W.J.; Liu, L. Extraction and isolation of polysaccharide from Portulaca oleracea by traditional process combined with membrane separation technology and evaluation of its anti-oxidant activity. Chin. Trad. Herb. Drugs 2016, 47, 1676–1681. [Google Scholar]
- Zhao, R.; Gao, X.; Cai, Y.; Shao, X.; Jia, G.; Huang, Y.; Qin, X.; Wang, J.; Zheng, X. Antitumor activity of Portulaca oleracea L. polysaccharides against cervical carcinoma in vitro and in vivo. Carbohydr. Polym. 2013, 96, 376–383. [Google Scholar] [CrossRef]
- Dong, C.X.; Hayashi, K.; Lee, J.B.; Hayashi, T. Characterization of structures and antiviral effects of polysaccharides from Portulaca oleracea L. Chem. Pharm. Bull. 2010, 58, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Deng, Y.; Li, S.P. Advanced analysis of polysaccharides, novel functional components in food and medicine dual purposes Chinese herbs. Trends Anal. Chem. 2017, 96, 138–150. [Google Scholar] [CrossRef]
- Chen, J.C.; Tian, S.; Shu, X.Y.; Du, H.T.; Li, N.; Wang, J.R. Extraction, Characterization and immunological activity of polysaccharides from Rhizoma gastrodiae. Int. J. Mol. Sci. 2016, 17, 1011. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.H.; Kim, K.I.; Han, C.K.; Kim, Y.C.; Hong, H.D. Effects of acidic polysaccharides from Gastrodia Rhizome on systolic blood pressure and serum lipid concentrations in spontaneously hypertensive rats fed a high-fat diet. Int. J. Mol. Sci. 2012, 13, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Ming, J.; Liu, J.; Wu, S.R.; Guo, X.H.; Chen, Z.D.; Zhao, G.H. Structural characterization and hypolipidemic activity of a polysaccharide PGEB-3H from the fruiting bodies of Gastrodia elataume. Procedia. Eng. 2012, 37, 169–173. [Google Scholar] [CrossRef]
- Zhao, G.H.; Kan, J.Q.; Li, Z.X.; Chen, Z.D. Characterization and immunostimulatory activity of an (1→6)-α-d-glucan from the root of Ipomoea batatas. Int. Immunopharmacol. 2005, 5, 1436–1445. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Cao, D.X.; Zhou, L.; Jin, H.Y.; Dong, Q.; Yao, J.; Ding, K. Structure of a polysaccharide from Gastrodia elata., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities. Carbohydr. Polym. 2011, 86, 1300–1305. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Chen, C.J.; Sun, H.Q.; Chen, L.J. Structural characterisation and ACE-inhibitory activities of polysaccharide from Gastrodia elataume. Nat. Prod. Res. 2018, 2, 1–6. [Google Scholar]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.X.; Luo, X.G. Optimization of extraction parameters for polysaccharides of Gastrodia elata. Li Shizhen Med. Mater. Medica Res. 2007, 18, 906–907. [Google Scholar]
- Vinatoru, M.; Toma, M.; Mason, T.J. Ultrasonically assisted extraction of bioactive principles from plants and their constituents. Adv. Sonochem. 1999, 5, 209–248. [Google Scholar]
- Glisic, S.B.; Ristic, M.; Skala, D.U. The combined extraction of sage (Salvia officinalis L.): Ultrasound followed by supercritical CO2 extraction. Ultrason. Sonochem. 2011, 18, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.J.; Ma, L.S.; Li, P.; Chen, M.W.; He, C.W. Prospects of poriacocos polysaccharides: Isolation process, structural features and bioactivities. Trends Food. Sci. Technol. 2016, 54, 52–62. [Google Scholar] [CrossRef]
- Fu, L.; Chen, H.; Dong, P.; Zhang, X.; Zhang, M. Effects of ultrasonic treatment on the physicochemical properties and DPPH radical scavenging activity of polysaccharides from mushroom Inonotus obliquus. J. Food Sci. 2010, 75, C322–C327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.J.; Xu, H.D.; An, X.G. Research on ultrasonic wave extraction of elata. Polysaccharides. J. Northwest A & F Univ. (Natural Science Edition) 2007, 35, 91–95. [Google Scholar]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels: II. enzyme-assisted extraction method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Pan, L.H.; Wang, J.; Ye, X.Q.; Zha, X.Q.; Luo, J.P. Enzyme-assisted extraction of polysaccharides from Dendrobium chrysotoxum and its functional properties and immunomodulatory activity. LWT-Food Sci. Technol. 2015, 60, 1149–1154. [Google Scholar] [CrossRef]
- Tan, S.; Zhu, R.W.; Zhang, J.; Li, G.F.; Li, L.; Zou, T. Extraction process optimization of polysaccharide in Gastonia elate by enzymatic method. Food. Res. Dev. 2017, 38, 50–53. [Google Scholar]
- Chen, Y.; Yao, F.K.; Ming, K.; Wang, D.Y.; Hu, Y.L.; Liu, J.G. Polysaccharides from traditional Chinese medicines: Extraction, purification, modification, and biological activity. Molecules 2016, 21, 1705. [Google Scholar] [CrossRef]
- Wang, Q.; Li, D.D.; Pan, Y.Y.; Wu, W. Effect of different extraction methods on the extraction ratio and antioxidant activity of polysaccharides from Gastrodia elata. Food Mach. 2017, 33, 146–150. [Google Scholar]
- Wang, N.; Zhang, Y.; Wang, X.; Huang, X.; Fei, Y.; Yu, Y.; Shou, D. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods. Int. J. Biol. Macromol. 2016, 83, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Govender, S.; Pillay, V.; Chetty, D.J.; Essack, S.Y.; Dangor, C.M.; Govender, T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int. Pharm. J. 2005, 306, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.H.; Dang, Y.L. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box–Behnken statistical design. Carbohydr. Polym. 2008, 74, 603–610. [Google Scholar] [CrossRef]
- Chen, R.Z.; Jin, C.G.; Tong, Z.G.; Lu, J.; Tan, L.; Tian, L.; Chang, Q.Q. Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohydr. Polym. 2016, 136, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.L.; Chau, H.K.; Cooke, P.H.; Yadav, M.P.; Hotchkiss, A.T. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloid. 2009, 23, 1554–1562. [Google Scholar] [CrossRef]
- Zhou, C.S.; Ma, H.L. Ultrasonic degradation of polysaccharide from a red algae (Porphyrayezoensis). J. Agric. Food Chem. 2006, 54, 2223–2228. [Google Scholar] [CrossRef]
- Ebringerova, A.; Hromadkova, Z. The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan. Ultrason. Sonochem. 1997, 4, 305–309. [Google Scholar] [CrossRef]
- Liu, H.; Bao, J.G.; Du, Y.M.; Zhou, X.; Kennedy, J.F. Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydr. Polym. 2006, 64, 553–559. [Google Scholar] [CrossRef]
- Reverchon, E.; Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluid. 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.J.; Park, Y.B.; Woo, H.C.; Chun, B.S. Structural, antioxidant, and emulsifying activities of fucoidan from Saccharina japonica using pressurized liquid extraction. Carbohydr. Polym. 2016, 153, 518–525. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, N.; Jin, Y.; Jin, Z.; Xu, X. Development of a fluidic system for efficient extraction of mulberry leaves polysaccharide using induced electric fields. Sep. Purif. Technol. 2017, 172, 318–325. [Google Scholar] [CrossRef]
- Glisic, S.; Ivanovic, J.; Ristic, M.; Skala, D. Extraction of sage (Salvia officinalis L.) by supercritical CO2: Kinetic data, chemical composition and selectivity of diterpenes. J. Supercrit. Fluid 2010, 52, 62–70. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Tang, X.; Fan, H.; Xie, X.; Wan, Q.; Wu, X.; Tang, J.Z. Extraction and characterization of polysaccharides from Semen Cassiae by microwaveassisted aqueous two-phase extraction coupled with spectroscopy and HPLC. Carbohydr. Polym. 2016, 144, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhang, Y.P.; Jin, L.X. Preparation, characterization and anti-ageing activity of Gastrodia elataume polysaccharide. Acta Aliment. 2018, 47, 210–219. [Google Scholar] [CrossRef]
- Zhu, X.X.; Zhang, Y. Purification of Gastrodia elata polysaccharides. Chin. J. Ethnomed. Ethnopharm. 2010, 102–103. [Google Scholar]
- Xu, S.Y.; Huang, X.S.; Cheong, K.L. Recent advances in marine algae Polysaccharides: Isolation, structure, and activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, X.X.; Wei, W.; Liu, X.; Tian, H.L.; Feng, Z.B.; Hu, H.Z.; Zheng, H.X. Macroporous adsorption resin for the purification of polysaccharides from Gastrodia elata. J. Sichuan Univ. (Natural Science Edition) 2018, 55, 1109–1115. [Google Scholar]
- Runyon, J.R.; Ulmius, M.; Nilsson, L. A perspective on the characterization of colloids and macromolecules using asymmetrical flow field-flow fractionation. Colloids. Surf. A 2014, 442, 25–33. [Google Scholar] [CrossRef]
- Song, H.; Lin, J.H.; Zhu, X.; Chen, Q. Developments in high-speed countercurrent chromatography and its applications in the separation of terpenoids and saponins. J. Sep. Sci. 2016, 39, 1574–1591. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Zhang, J.; Xu, R.P.; Ma, X.; Zhang, Z.Q. Aqueous biphasic system based on low-molecular-weight polyethylene glycol for one-step separation of crude polysaccharides from Pericarpium granati using high-speed countercurrent chromatography. J. Chromatogr. A 2014, 1362, 129–134. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Li, X.; Yu, P. Purification and structural characterization of Chinese yam polysaccharide and its activities. Carbohydr. Polym. 2015, 117, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Li, W.L.; Wu, T. Rapid separation of polysaccharides using a novel spiral coil column by high-speed countercurrent chromatography. J. Sep. Sci. 2016, 39, 1404–1410. [Google Scholar] [PubMed]
- Yu, P.; Sun, H.S. Purification of a fucoidan from kelp polysaccharide and its inhibitory kinetics for tyrosinase. Carbohydr. Polym. 2014, 99, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, X.; Feng, S.L.; Liu, J.; Zhou, L.J.; Yuan, M.; Ding, C.B. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. Int. J. Biol. Macromol. 2016, 91, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.R.; Ji, X.H.; Lu, X.L. Isolation of Gastrodia elata. polysaccharides and analysis of its composition of monosaccharide. Chin. Agric. Sci. Bull. 2008, 24, 89–92. [Google Scholar]
- Karlsson, G.; Winge, S.; Sandberg, H. Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection. J. Chromatogr. A 2005, 1092, 246–249. [Google Scholar] [CrossRef]
- Márquez-Sillero, I.; Cárdenas, S.; Valcárcel, M. Comparison of two evaporative universal detectors for the determination of sugars in food samples by liquid chromatography. Microchem. J. 2013, 110, 629–635. [Google Scholar] [CrossRef]
- Menshova, R.V.; Anastyuk, S.D.; Ermakova, S.P.; Shevchenko, N.M.; Isakov, V.I.; Zvyaginstseva, T.N. Structure and anticancer activity in vitro of sulfated galactofucan from brown alga Alaria angusta. Carbohydr. Polym. 2015, 132, 118–125. [Google Scholar] [CrossRef]
- Hu, D.J.; Cheong, K.L.; Zhao, J.; Li, S.P. Chromatography in characterization of polysaccharides from medicinal plants and fungi. J. Sep. Sci. 2013, 36, 1–19. [Google Scholar] [CrossRef]
- Guan, J.; Li, S.P. Discrimination of polysaccharides from traditional Chinese medicines using saccharide mapping-enzymatic digestion followed by chromatographic analysis. J. Pharm. Biomed. Anal. 2010, 51, 590–598. [Google Scholar] [CrossRef]
- Wu, D.T.; Meng, L.Z.; Wang, L.Y.; Lv, G.P.; Cheong, K.L.; Hu, D.J.; Guan, J.; Zhao, J.; Li, S.P. Chain conformation and immunomodulatory activity of a hyperbranched polysaccharide from Cordyceps sinensis. Carbohydr. Polym. 2014, 110, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; Xie, J.; Wang, L.Y.; Ju, Y.J.; Lv, G.P.; Leong, F.; Zhao, J.; Li, S.P. Characterization of bioactive polysaccharides from Cordyceps militaris produced in China using saccharide mapping. J. Funct. Foods 2014, 9, 315–323. [Google Scholar] [CrossRef]
- Wu, D.T.; Cheong, K.L.; Wang, L.Y.; Lv, G.P.; Ju, Y.J.; Feng, K.; Zhao, J.; Li, S.P. Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC. Carbohydr. Polym. 2014, 103, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; Xie, J.; Hu, D.J.; Zhao, J.; Li, S.P. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping. Carbohydr. Polym. 2013, 97, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.L.; Wu, D.T.; Hu, D.J.; Zhao, J.; Cao, K.Y.; Qiao, C.F.; Han, B.X.; Li, S.P. Comparison and characterization of the glycome of Panax species by high performance thin-layer chromatography. J. Planar Chromat. Modern TLC 2014, 27, 449–453. [Google Scholar] [CrossRef]
- Zhou, B.H.; Yang, L.; Yuan, Y.; Shen, H.; Feng, Q.; Guo, Z.L.; Liu, G. Isolation and structure identification of an acidic and heteropolysaccharide from Gastrodia elataume. Chin. J. Hosp. Pharm. 2009, 29, 2002–2006. [Google Scholar]
- Cheong, K.L.; Wu, D.T.; Zhao, J.; Li, S.P. A rapid and accurate method for the quantitative estimation of natural polysaccharides and their fractions using high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector. J. Chromatogr. A 2015, 1400, 98–106. [Google Scholar] [CrossRef]
- Cheong, K.L.; Wu, D.T.; Deng, Y.; Leong, F.; Zhao, J.; Zhang, W.J.; Li, S.P. Qualitation and quantification of specific polysaccharides from Panax species using GC- MS, saccharide mapping and HPSEC-RID-MALLS. Carbohydr. Polym. 2016, 153, 47–54. [Google Scholar] [CrossRef]
- Wu, D.T.; Lam, S.C.; Cheong, K.L.; Wei, F.; Lin, P.C.; Long, Z.R.; Lv, X.J.; Zhao, J.; Ma, S.C.; Li, S.P. Simultaneous determination of molecular weights and contents of water-soluble polysaccharides and their fractions from Lycium barbarum collected in China. J. Pharm. Biomed. Anal. 2016, 129, 210–218. [Google Scholar] [CrossRef]
- Lu, X.; Mo, X.; Guo, H.; Zhang, Y. Sulfation modification and anticoagulant activity of the polysaccharides obtained from persimmon (Diospyros kaki L.) fruits. Int. J. Biol. Macromol. 2012, 51, 1189–1195. [Google Scholar] [CrossRef]
- Li, S.Q.; Shah, N.P. Antioxidant and antibacterial activities of sulphated polysaccharides from Pleurotus eryngii and streptococcus thermophilus ASCC 1275. Food Chem. 2014, 165, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Hattori, K.; Yoshida, T.; Nakashima, H.; Premanathan, M.; Aragaki, R.; Mimura, T.; Kaneko, Y.; Yamamoto, N.; Uryu, T. Synthesis of sulfonated amino-polysaccharides having anti-HIV and blood anticoagulant activities. Carbohydr. Res. 1998, 312, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Wei, X.; Yang, Z.; Xiao, J.; Jin, Z. Sulfation of tea polysaccharides: Synthesis, characterization and hypoglycemic activity. Int. J. Biol. Macromol. 2010, 46, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiong, Q.; Lai, X.; Li, X.; Wan, M.; Zhang, J.; Yan, Y.; Cao, M.; Lu, L.; Guan, J.; et al. Molecular modification of polysaccharides and resulting bioactivities. Compr. Rev. Food. Sci. F. 2016, 15, 237–250. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, M.; Du, Z.; Jing, L.; Surahio, M.; Yang, L. Carboxymethylation of an exopolysaccharide from Lachnum and effect of its derivatives on experimental chronic renal failure. Carbohydr. Polym. 2014, 114, 190–195. [Google Scholar] [CrossRef]
- Chen, T.; Li, B.; Li, Y.; Zhao, C.; Shen, J.; Zhang, H. Catalytic synthesis and antitumor activities of sulfated polysaccharide from Gynostemma pentaphyllum Makino. Carbohydr. Polym. 2011, 83, 554–560. [Google Scholar] [CrossRef]
- Liu, X.; Wan, Z.; Shi, L.; Lu, X. Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua. Carbohydr. Polym. 2011, 83, 737–742. [Google Scholar] [CrossRef]
- Lee, C.M.; Jeong, H.J.; Kim, D.W.; Lee, K.Y. Alginate/carboxymethyl scleroglucan hydrogels for controlled release of protein drugs. Macromol. Res. 2008, 16, 429–433. [Google Scholar] [CrossRef]
- Qin, T.; Chen, J.; Wang, D.; Hu, Y.; Wang, M.; Zhang, J.; Nguyen, T.L.; Liu, C.; Liu, X. Optimization of selenylation conditions for Chinese angelica polysaccharide based on immune-enhancing activity. Carbohydr. Polym. 2013, 92, 645–650. [Google Scholar] [CrossRef]
- Du, X.; Zhang, J.; Lv, Z.; Ye, L.; Yang, Y.; Tang, Q. Chemical modification of an acidic polysaccharide (TAPA1) from Tremella aurantialba and potential biological activities. Food. Chem. 2014, 143, 336–340. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, J.; Jin, W.; Zhang, H.; Zhang, Q. Degradation of Laminaria japonica fucoidan by hydrogen peroxide and antioxidant activities of the degradation products of different molecular weights. Carbohydr. Polym. 2012, 87, 153–159. [Google Scholar] [CrossRef]
- Han, B.; Gao, Y.; Wang, Y.; Wang, L.; Shang, Z.; Wang, S.; Pei, J. Protective effect of a polysaccharide from rhizoma Atractylodis Macrocephalae on acute liver injury in mice. Int. J. Biol. Macromol. 2016, 87, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Xu, W. Microwave-assisted solubilization and solution properties of hyperbranched polysaccharide. Carbohydr. Res. 2008, 343, 3071–3078. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Zhang, Q.; Tong, L.; Liu, L.; Zhou, X.; Zhou, S. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment. Ultrason. Sonochem. 2015, 23, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Yang, B.; Pei, Z.; Zhang, Z.; Ding, K. WSS25 Inhibits growth of xenografted hepatocellular cancer cells in nude mice by disrupting angiogenesis via blocking bone morphogenetic protein (BMP)/Smad/Id1 Signaling. J. Biol. Chem. 2010, 285, 32638–32646. [Google Scholar] [CrossRef]
- Xiao, F.; Qiu, H.; Zhou, L.; Shen, X.; Yang, L.; Ding, K. WSS25 inhibits dicer, downregulating microRNA-210, which targets ephrin-A3, to suppress human microvascular endothelial cell (HMEC-1) tube formation. Glycobiology 2013, 23, 524–535. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, F.; Wang, Y.; Fang, J.; Ding, K. Structure–activity relationship study of WSS25 derivatives with anti-angiogenesis effects. Glycoconj. J. 2012, 29, 389–398. [Google Scholar] [CrossRef]
- Itoh, K.; Udagawa, N.; Katagiri, T.; Iemura, S.; Ueno, N.; Yasuda, H.; Higashio, K.; Quinn, J.M.; Gillespie, M.T.; Martin, T.J.; et al. Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology 2001, 142, 3656–3662. [Google Scholar] [CrossRef]
- Pham, L.; Beyer, K.; Jensen, E.D.; Rodriguez, J.S.; Davydova, J.; Yamamoto, M.; Petryk, A.; Gopalakrishnan, R.; Mansky, K.C. Bone morphogenetic protein 2 signaling in osteoclasts is negatively regulated by the BMP antagonist, twisted gastrulation. J. Cell. Biochem. 2011, 112, 793–803. [Google Scholar] [CrossRef]
- Liu, B.; Gao, J.M.; Li, F.; Gong, Q.H.; Shi, J.S. Gastrodin attenuates bilateral common carotid artery occlusion-induced cognitive deficits via regulating Aβ-related proteins and reducing autophagy and apoptosis in rats. Front. Pharmacol. 2018, 9, 405. [Google Scholar] [CrossRef]
- Shi, A.H.; Xiang, J.M.; He, F.Y.; Zhu, Y.P.; Zhu, G.B.; Lin, Y.H.; Zhou, N.N. The phenolic components of Gastrodia elata improve prognosis in rats after cerebral ischemia/reperfusion by enhancing the endogenous antioxidant mechanisms. Oxid. Med. Cell. Longev. 2018, 2018, 7642158. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.Y.; Chao, Y.M.; Du, Z.; Zhang, Y. Effects of polysaccharides from Gastrodia elata on anti-aging of ageing Mice. Pharm. J. Chin. PLA 2010, 26, 206–209. [Google Scholar]
- Li, X.B.; Zhan, J.P.; Zhang, Y.T.; Xie, Z.L.; Zhu, Y.Q.; Chen, Y.L.; Cheng, K.; Wang, J.M.; Li, R.Q. Effect of polysaccharide from Gastrodia elata on humoral immune function in immunosuppressed mice induced by cyclophosphamide. Chin. J. Gerontol. 2016, 36, 1027–1028. [Google Scholar]
- Li, H.B.; Wu, F.; Miao, H.C.; Xiong, K.R. Effects of polysaccharide of Gastrodia elataume and electro-acupuncture on expressions of brain-derived neurotrophic factor and stem cell factor protein in caudate putamen of focal cerebral ischemia rats. Med. Sci. Monit. Basic. Res. 2016, 22, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.H.; Tan, J.; Zhang, C.; Wu, Y. Neuroprotective effect of polysaccharides from Gastrodia elataume against corticosterone-induced apoptosis in PC12 cells via inhibition of the endoplasmic reticulum stress-mediated pathway. Mol. Med. Rep. 2018, 17, 1182–1190. [Google Scholar]
- Kim, K.J.; Lee, O.H.; Han, C.K.; Kim, Y.C.; Hong, H.D. Acidic Polysaccharide extracts from Gastrodia rhizomes suppress the atherosclerosis risk index through inhibition of the serum cholesterol composition in sprague dawley rats fed a high-fat diet. Int. J. Mol. Sci. 2012, 13, 1620–1631. [Google Scholar] [CrossRef]
- Huang, R.; Zhao, J.; Wu, F.; Miao, H.C.; Ding, J.; Xiong, K.R. Effect of electroacupuncture plus polysaccharide of Gastrodia elataume on expression of nestin and brain derived neurotrophic factor in the basolateral amygdala of focal cerebral ischemia rats. Zhen Ci Yan Jiu 2016, 41, 230–234. [Google Scholar]
- Zan, L.X.; Wang, Y.; Hu, L.L.; Xu, H.; Zhao, H.; Yang, P.J.; Jiang, J.L.; Chen, C. Application of Gastrodia elata polysaccharide to the skin cream. J. Shaanxi Univ. Tech. (Natural Science Edition) 2016, 32, 53–64. [Google Scholar]
- Wang, Y.; Zan, L.X.; Hu, L.L.; Xu, H.; Yang, P.J.; Zhao, H.; Chen, C. Formulation study of O/W creams cosmetics Tianma crude extract. Asia-Pac. Tradit. Med. 2016, 12, 21–23. [Google Scholar]
- Du, S.J.; Chen, D.L. Extraction of polysaccharides from Tianma stem and preparation of moisturizer. Yunnan Chem. Tech. 2018, 45, 102–104. [Google Scholar]
- Zheng, J.; Sun, M.M.; Hu, A.J.; Hu, X.H.; Ren, Y.Y.; Yu, S.Y. Extraction of Polysaccharide from Gastrodia elata Blume and preparation of its drinks. Food Res. Dev. 2018, 39, 123–128. [Google Scholar]
- Seddon, K.R. Ionic liquids for clean technology. J. Chem. Tech. Biotechnol. 1997, 68, 351–356. [Google Scholar] [CrossRef]
- Xie, H.B.; Zhang, S.B.; Li, S.H. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2006, 8, 630–633. [Google Scholar] [CrossRef]
- Liu, H.Z.; Li, Y.A.; Gao, J.; Shi, A.; Liu, A.; Hu, H.; Putri, N.; Yu, H.; Fan, W.; Wang, Q. Effects of microfluidization with ionic liquids on the solubilization and structure of β-d-glucan. Int. J. Biol. Macromol. 2015, 84, 394–401. [Google Scholar] [CrossRef] [PubMed]
Name [ref] | Defat | Extract | Yield |
---|---|---|---|
WGE [10] | 95% EtOH, 3 times | Boiling water, 4 times, 4 h | 5.1 g |
AGE [10] | 95% EtOH, 3 times | 5% NaOH (2 h) at 4 °C, 2 times | 10 g |
TM [27] | 95% EtOH for 7 days | Boiling water, four times, 4 h | 5.2% |
PGEB-3H [26] | 85% EtOH (1000 mL × 3) at 70 °C for 4 h | Water (800 mL × 4) at r.t. for 3 h | - |
GR-0 [24] | 10 volumes (v/w) of 80% EtOH at 60 °C, 2 times for 3 h | 2 L of boiling distilled H2O for 3 h | 2.47 g |
RGP [23] | 75% EtOH, 3 times over 24 h | Water at 74 °C, 3 times for 66 min | 6.11% |
GPs [13] | 3 volumes of absolute EtOH at 60 °C for 24 h | Water at 90 °C, 4 times at 4 h each | - |
The crude polysaccharide [28] | - | 400 mL of distilled water for 2 h at 60 °C, 3 times | 10.12% |
GEP [54] | - | Water at 90 °C for 4 h | - |
Name [ref] | Purify | Flow Rate | Eluting Solvent | Yield |
---|---|---|---|---|
WGEW [10] | DEAE-cellulose column (50 × 5 cm) | - | deionized water | 0.6 g from 5.1 g WGE |
AGEW [10] | DEAE-cellulose column (50 × 5 cm) | - | deionized water | 1.8 g from 10.0 g AGE |
WTMA [27] | DEAE-cellulose (50 cm × 5 cm, Cl− form) | - | 0.1M NaCl | 0.8 g from 6 g TM |
PGEB-3H [26] | DEAE-cellulose A52 column (2.6 × 30 cm) | - | deionized water | 0.797 g/kg |
Sephadex G-100 column (1.6 × 70 cm) | - | 0.1 M NaCl | ||
The acidic polysaccharides [24] | DEAE-Sepharose CL-6B | - | 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 M NaCl | 0.61 g from 2.47 g GR-0 |
RGP-1a, PGP-1b [23] | DEAE-cellulose-52 column (2.6 cm × 80 cm) | 1 mL/min | deionized water | - |
Sephadex G-100 column (1.8 cm × 100 cm) | 0.2 mL/min | deionized water | - | |
GPs [13] | DEAE-52 cellulose column | 2.0 mL/min | distilled water and a gradient of 0→2 mol/L NaCl | - |
PGE [28] | Sephadex G-200 column | 0.30 mL/min | distilled water | - |
Name [ref] | Molecular Weight (Da) | Monosaccharide Composition | Backbone | Biological Activities |
---|---|---|---|---|
WGEW [10] | 1.0 × 105 | Glucose | α-1,4-glucan and α-1,4,6-glucan | - |
AGEW [10] | 2.8 × 105 | Glucose | α-1,4-glucan and α-1,4,6-glucan | - |
WTMA [27] | 7.0 × 105 | Glucose | α-1,4-glucan and α-1,4,6-glucan | Anti-cancer |
PGEB-3H [25] | 2.88 × 104 | Glucose | α-1,4-glucan and α-1,4,6-glucan | Cardiovascular system |
The acidic polysaccharides [24] | - | Xylose, glucose, galacturonic acid, and glucuronic acid | - | Cardiovascular system |
RGP-1a [23] | 1.925 × 104 | fructose: glucose = 1:10.68 | - | Immunological activity |
RGP-1b [23] | 3.92 × 103 | Glucose | - | Immunological activity |
GPs [13] | 2.71 × 105 | Glucose | - | Immunological activity |
PGE [28] | 1.54 × 106 | Glucose | α-1,4-glucan, α-1,3-glucan and α-1,4,6-glucan | Cardiovascular system |
GEP [54] | 875185 | Glucose | - | Antioxidant |
Name [ref] | Molecular Weight (Da) | Modification | DS 1 | Bioactivities 2 | ||
---|---|---|---|---|---|---|
a | b | c | ||||
AGEW [10] | 1.0 × 105 | - | 0 | − | − | − |
ASS25 [10] | 1.5 × 105 | sulfation | 0.579 | − | − | − |
ASS45 [10] | 6.8 × 104 | 0.624 | + | − | − | |
WGEW [10] | 2.8 × 105 | - | 0 | − | − | − |
WSS25 [10,11,95,96,97] | 6.5 × 104 | sulfation | 0.206 | + | + | + |
WSS45 [10] | 1.9 × 105 | 1.685 | + | − | − | |
M1S [97] | 1.8 × 105 | 1.050 | − | + | − | |
M2S [97] | 1.3 × 105 | 1.220 | − | + | − | |
M3S [97] | 7.5 × 104 | 1.270 | − | + | − | |
M4S [97] | 4.1 × 104 | 1.210 | − | + | − | |
M5S [97] | 1.4 × 104 | 1.050 | − | − | − | |
M6S [97] | 1.2 × 104 | 1.240 | − | − | − | |
M7S [97] | 2.7 × 103 | 1.350 | − | − | − | |
WGES1 [97] | 2.4 × 105 | 0.141 | − | + | − | |
WGES2 [97] | 6.7 × 104 | 0.097 | − | + | − | |
WGES3 [97] | 1.8 × 105 | 0.194 | − | + | − | |
WGES4 [97] | 8.0 × 104 | 0.173 | − | + | − | |
WGES5 [97] | 1.38 × 105 | 0.220 | − | + | − | |
WGES6 [97] | 7.6 × 104 | 0.202 | − | + | − | |
WGEA | 5.7 × 103 | aminopropylation | unknown | − | − | − |
WGEC | 7.3 × 104 | carboxymethylation | − | − | − | |
WGEP | 2.2 × 103 | phosphorylation | − | − | − | |
WGEL | 6.0 × 105 | acetylation | − | − | − |
Name [ref] | Activities | Cell Lines | Animals Model | Model of Action |
---|---|---|---|---|
WTMA [27] | anti-cancer | PANC-1, live LO2 cells | - | - |
G. elata polysaccharides [9] | - | H22 tumor-bearing mice | increases caspase-3,8,9 levels and G0/G1 phase cell percentage, and decrease G2/M phase cell percentage | |
G. elata polysaccharides [12] | anti-aging and antioxidation | - | aging mice | improves the activities of SOD and GSH-Px, inhibits MAO activity, and reduces the level of MDA to |
G. elata polysaccharides [102] | - | aging mice | promote the recovery of cranial nerves, significantly improve the activity of enzymes related to oxidative metabolism in the body | |
GEP [52] | - | aging mice | increases the activity of superoxide dismutase and glutathione peroxidase, as well as the serum and malondialdehyde levels | |
RGP-1a, RGP-1b [23] | Immunomodulatory effects | RAW 264.7 cell macrophages | - | enhances NO production and phagocytic activity |
G. elata polysaccharides [103] | - | Immunocompromised mice | increases serum IgA, IgG, and hemolysin, the spleen index, thymus index, and serum IgM levels | |
GPs [13] | - | Kunming mice | augments serum IL-2, TNF-α, IFN-γ, IgG, IgA, and IgM levels, as well as the spleen and thymus indexes | |
PGEB-3H [25] | - | mice | increases the Ach content in brain tissue | |
PGB [104] | BDNF-positive cells and SCF-positive cells | Focal cerebral ischemia rats | up-regulates BDNF, Nestin, and SCF expression | |
GEP [105] | neuroprotection cardiovascular system | PC12 cells | - | inhibits the endoplasmic reticulum stress-mediated pathway |
PGB [104] | - | RHR rats | promotes the production of endogenous vasoactive substances such as nitric oxide and inhibits the release of endogenous vasoconstrictors such as plasma endothelin and angiotensin II | |
PGEB-3H [25] | - | Hyperlipidemia rats | - | |
Crude and acidic polysaccharides [106] | cardiovascular system | - | SD rats fed a high-fat diet | suppresses total cholesterol and LDL |
Acidic polysaccharides [24] | - | SHR rats fed a high-fat diet | reduces total cholesterol, triglyceride, and LDL levels | |
PGE [28] | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Liu, C.; Hou, J.; Long, H.; Wang, B.; Guo, D.; Lei, M.; Wu, W. Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules 2019, 24, 2436. https://doi.org/10.3390/molecules24132436
Zhu H, Liu C, Hou J, Long H, Wang B, Guo D, Lei M, Wu W. Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules. 2019; 24(13):2436. https://doi.org/10.3390/molecules24132436
Chicago/Turabian StyleZhu, Haodong, Chen Liu, Jinjun Hou, Huali Long, Bing Wang, De’an Guo, Min Lei, and Wanying Wu. 2019. "Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities" Molecules 24, no. 13: 2436. https://doi.org/10.3390/molecules24132436
APA StyleZhu, H., Liu, C., Hou, J., Long, H., Wang, B., Guo, D., Lei, M., & Wu, W. (2019). Gastrodia elata Blume Polysaccharides: A Review of Their Acquisition, Analysis, Modification, and Pharmacological Activities. Molecules, 24(13), 2436. https://doi.org/10.3390/molecules24132436