Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis
Abstract
:1. Introduction
2. Mathematical Models and Methods
2.1. Reaction System
2.2. Concentration Sensitivity Analysis
2.3. Configurations of the Model
3. Results and Discussion
3.1. Urban Scenario
3.2. Low-NOx Scenario
4. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Reaction Number | Reaction | Rate Constant (k) () |
---|---|---|
(SR1) | radiation dependent | |
(SR2) | ||
(SR3) | ||
(SR4) | ||
(SR5) | ||
(SR6) | ||
(SR7) | ||
(SR8) | radiation dependent | |
(SR9) | radiation dependent | |
(SR10) | ||
(SR11) | ||
(SR12) | ||
(SR13) | ||
(SR14) | radiation dependent | |
(SR15) | ||
(SR16) | ||
(SR17) | ||
(SR18) | ||
(SR19) | ||
(SR20) | ||
(SR21) | ||
(SR22) | ||
(SR23) | radiation dependent | |
(SR24) | ||
(SR25) | ||
(SR26) | ||
(SR27) | ||
(SR28) | ||
(SR29) | ||
(SR30) | ||
(SR31) | ||
(SR32) | ||
(SR33) | ||
(SR34) | radiation dependent | |
(SR35) | ||
(SR36) | ||
(SR37) | ||
(SR38) | radiation dependent | |
(SR39) | radiation dependent | |
(SR40) | ||
(SR41) | ||
(SR42) | ||
(SR43) | ||
(SR44) | ||
(SR45) | radiation dependent | |
(SR46) | ||
(SR47) | ||
(SR48) | ||
(SR49) | ||
(SR50) | ||
(SR51) | ||
(SR52) | ||
(SR53) | ||
(SR54) | ||
(SR55) | ||
(SR56) | ||
(SR57) | ||
(SR58) | ||
(SR59) | ||
(SR60) | ||
(SR61) | ||
(SR62) | ||
(SR63) | ||
(SR64) | ||
(SR65) | 4.2 | |
(SR66) | ||
(SR67) | ||
(SR68) | ||
(SR69) | ||
(SR70) | ||
(SR71) | radiation dependent | |
(SR72) | ||
(SR73) | ||
(SR74) | radiation dependent | |
(SR75) | ||
(SR76) | ||
(SR77) | ||
(SR78) | ||
(SR79) | ||
(SR80) | ||
(SR81) |
References
- Akimoto, H. Global air quality and pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; Technical Report; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Dodge, M.C. Chemical oxidant mechanisms for air quality modeling: Critical review. Atmos. Environ. 2000, 34, 2103–2130. [Google Scholar] [CrossRef]
- Jimenez, P.; Baldasano, J.M.; Dabdub, D. Comparison of photochemical mechanisms for air quality modeling. Atmos. Environ. 2003, 37, 4179–4194. [Google Scholar] [CrossRef]
- Gery, M.W.; Whitten, G.; Killus, J.P.; Dodge, M.C. A photochemical kinetics mechanism for urban and regional scale computer modeling. J. Geophys. Res. 1989, 94, 12925–12956. [Google Scholar] [CrossRef]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Atmos. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G. Updates to the Carbon Bond Chemical Mechanism: CB05; Technical Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2005.
- Yarwood, G.; Jung, J.; Whitten, G.; Heo, G.; J, M.; M, E. Updates to the Carbon Bond Mechanism for Version 6 (CB6). In Proceedings of the 9th Annual CMAS Conference, Chapel Hill, NC, USA, 11–13 October 2010; pp. 1–4. [Google Scholar]
- Carter, W.P. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment; Technical Report 329; California Air Resources Board: Sacramento, CA, USA, 2000.
- Carter, W.P. Implementation of the SAPRC-99 Chemical Mechanism into the Models-3 Framework; Technical Report; United States Environmental Protection Agency: Washington, DC, USA, 2000.
- Carter, W.P. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Pitts, J.N.; Darnall, K.; Carter, W.; Winer, A.; Atkinson, R. Mechanisms of Photochemical Reactions in Urban Air; Technical Report; Environmental Sciences Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Washington, DC, USA, 1977.
- Jeffries, H.E.; Kamens, R.M.; Sexton, K.G.; Gerhardt, A.A. Outdoor Smog Chamber Experiments to Test Photochemical Models; Technical Report; U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory: Research Triangle Park, NC, USA, 1982.
- Jeffries, H.E.; Sexton, K.G.; Kamens, R.M.; Holleman, M.S. Outdoor Smog Chamber Experiments to Test Photochemical Models: Phase II; Technical Report; U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory: Research Triangle Park, NC, USA, 1985.
- Carter, W.P.L.; Dodd, M.C.; Long, W.D.; Atkinson, R.; . Dodge, M.C. Outdoor Chamber Study to Test Multi-Day Effects; Technical Report; U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory: Research Triangle Park, NC, USA, 1985; Volumes I–III.
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Damian, V.; Sandu, A.; Damian, M.; Potra, F.A.; Carmichael, G.R. The kinetic preprocessor KPP—A software environment for solving chemical kinetics. Comput. Chem. Eng. 2002, 26, 1567–1579. [Google Scholar] [CrossRef]
- Sandu, A.; Sander, R. Technical note: Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. Phys. 2006, 6, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Aneja, V.P.; Mathur, R.; Ray, J.D. Observed and modeled VOC chemistry under high VOC/NO conditions in the Southeast United States national parks. Atmos. Environ. 2004, 38, 4969–4974. [Google Scholar] [CrossRef]
- Matthes, S.; Grewe, V.; Sausen, R.; Roelofs, G.J. Global impact of road traffic emissions on tropospheric ozone. Atmos. Chem. Phys. 2007, 7, 1707–1718. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Han, Z.; Wang, T.; Zhang, R. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China. Sci. Total Environ. 2008, 395, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Oshima, N.; Koike, M.; Zhang, Y.; Kondo, Y.; Moteki, N.; Takegawa, N.; Miyazaki, Y. Aging of black carbon in outflow from anthropogenic sources using a mixing state resolved model: Model development and evaluation. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chung, C.E.; Yin, Y.; Schnaiter, M. The absorption Ångström exponent of black carbon: from numerical aspects. Atmos. Chem. Phys. 2018, 18, 6259–6273. [Google Scholar] [CrossRef]
- Garmory, A.; Kim, I.; Britter, R.; Mastorakos, E. Simulations of the dispersion of reactive pollutants in a street canyon, considering different chemical mechanisms and micromixing. Atmos. Environ. 2009, 43, 4670–4680. [Google Scholar] [CrossRef] [Green Version]
- Kwak, K.H.; Baik, J.J. A CFD modeling study of the impacts of NOx and VOC emissions on reactive pollutant dispersion in and above a street canyon. Atmos. Environ. 2012, 46, 71–80. [Google Scholar] [CrossRef]
- Kwak, K.H.; Baik, J.J.; Lee, K.Y. Dispersion and photochemical evolution of reactive pollutants in street canyons. Atmos. Environ. 2013, 70, 98–107. [Google Scholar] [CrossRef]
- Kwak, K.H.; Baik, J.J. Diurnal variation of NOx and ozone exchange between a street canyon and the overlying air. Atmos. Environ. 2014, 86, 120–128. [Google Scholar] [CrossRef]
- Turányi, T. KINAL—A program package for kinetic analysis of reaction mechanisms. Comput. Chem. 1990, 14, 253–254. [Google Scholar] [CrossRef]
- Sandu, A.; Daescu, D.N.; Carmichael, G.R. Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: Part I—Theory and software tools. Atmos. Environ. 2003, 37, 5083–5096. [Google Scholar] [CrossRef]
- Daescu, D.N.; Sandu, A.; Carmichael, G.R. Direct and adjoint sensitivity analysis of chemical kinetic systems with KPP: II—Numerical validation and applications. Atmos. Environ. 2003, 37, 5097–5114. [Google Scholar] [CrossRef]
- Cao, L.; Gao, M.; Li, S.; Yi, Z.; Meng, X. Sensitivity analysis of the dependence of the carbon bond mechanism IV (CBM-IV) on the initial air composition under an urban condition. Atmos. Environ. 2019. under review. [Google Scholar]
- Cao, L.; Wang, C.; Mao, M.; Grosshans, H.; Cao, N. Derivation of the reduced reaction mechanisms of ozone depletion events in the Arctic spring by using concentration sensitivity analysis and principal component analysis. Atmos. Chem. Phys. 2016, 16, 14853–14873. [Google Scholar] [CrossRef] [Green Version]
- Sandu, A.; Verwer, J.; Loon, M.V.; Carmichael, G.; Potra, F.; Dabdub, D.; Seinfeld, J. Benchmarking stiff ode solvers for atmospheric chemistry problems-I. implicit vs explicit. Atmos. Environ. 1997, 31, 3151–3166. [Google Scholar] [CrossRef] [Green Version]
- Atkins, P.; de Paula, J. Atkins’ Physical Chemistry; OUP Oxford: Oxford, UK, 2010. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Species | Urban | Low-NOx |
---|---|---|
50 | 0.1 | |
20 | 0.1 | |
1 | 30 | |
100 | 100 | |
300 | 300 | |
10 | 10 | |
10 | 10 | |
1 | 1 | |
10 | 10 | |
10 | 10 | |
10 | 10 | |
10 | 10 | |
Relative humidity | 30% | |
Temperature | 288.15 K | |
Altitude | 0 km | |
Pressure | hPa | |
Air density | molec. cm |
Species | Maximum Deviation (%) | Species | Maximum Deviation (%) | Species | Maximum Deviation (%) |
---|---|---|---|---|---|
NO | 3.4 | TOL | 0.5 | PNA | 3.1 |
NO2 | 3.2 | XYL | 0.8 | 2.9 | |
HONO | 1.9 | ISOP | 4.1 | MGLY | 0.5 |
O3 | 0.1 | H2O | 0.0 | O(1D) | 0.1 |
CO | 0.0 | HO2 | 0.4 | O(3P) | 0.4 |
FORM | 0.2 | H2O2 | 1.2 | CRES | 1.0 |
0.3 | OH | 0.4 | CRO | 2.3 | |
PAN | 0.4 | XO2 | 1.2 | NO3 | 1.7 |
PAR | 0.2 | ROR | 0.2 | 0.4 | |
OLE | 0.6 | XO2N | 1.5 | OPEN | 0.5 |
ETH | 0.4 | HNO3 | 0.5 | N2O5 | 4.6 |
Species | Maximum Deviation (%) | Species | Maximum Deviation (%) | Species | Maximum Deviation (%) |
---|---|---|---|---|---|
NO | 1.8 | TOL | 0.2 | PNA | 0.4 |
NO2 | 0.4 | XYL | 0.3 | 0.4 | |
HONO | 0.5 | ISOP | 0.6 | MGLY | 0.2 |
O3 | 0.0 | H2O | 0.0 | O(1D) | 0.0 |
CO | 0.0 | HO2 | 0.1 | O(3P) | 0.0 |
FORM | 0.0 | H2O2 | 0.0 | CRES | 2.2 |
1.2 | OH | 0.1 | CRO | 0.3 | |
PAN | 0.0 | XO2 | 0.2 | NO3 | 2.1 |
PAR | 0.0 | ROR | 0.1 | 0.2 | |
OLE | 0.3 | XO2N | 0.4 | OPEN | 0.2 |
ETH | 0.5 | HNO3 | 0.1 | N2O5 | 2.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Li, S.; Yi, Z.; Gao, M. Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis. Molecules 2019, 24, 2463. https://doi.org/10.3390/molecules24132463
Cao L, Li S, Yi Z, Gao M. Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis. Molecules. 2019; 24(13):2463. https://doi.org/10.3390/molecules24132463
Chicago/Turabian StyleCao, Le, Simeng Li, Ziwei Yi, and Mengmeng Gao. 2019. "Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis" Molecules 24, no. 13: 2463. https://doi.org/10.3390/molecules24132463
APA StyleCao, L., Li, S., Yi, Z., & Gao, M. (2019). Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis. Molecules, 24(13), 2463. https://doi.org/10.3390/molecules24132463