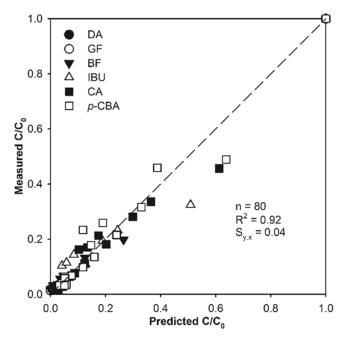


Optimization of the Electro-Peroxone Process for Micropollutant Abatement Using Chemical Kinetic Approaches

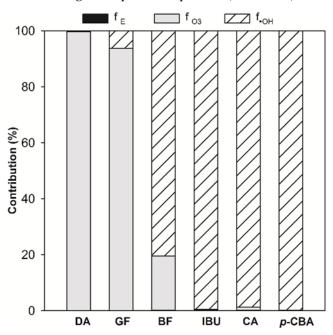

Huijiao Wang ^{1,2}, Lu Su ³, Shuai Zhu ⁴, Wei Zhu ⁵, Xia Han ⁵, Yi Cheng ¹, Gang Yu ² and Yujue Wang ^{2,*}

- ¹ Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- ² School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
- ³ Hangzhou Jinhong Real Estate Co., Ltd., Hangzhou 310000, China
- ⁴ Beijing Guohuan Tsinghua Environmental Engineering Design & Research Institute Co., Ltd, Beijing 100084, China
- ⁵ Sinopec Energy and Environmental Engineering Co., Ltd., Wuhan 430070, China
- * Correspondence: wangyujue@tsinghua.edu.cn; Tel.: +86-10-62772914

Figure S1. O₃ decay during E-peroxone treatment of surface water at different currents (0 mA (ozonation), 10 mA, 30 mA, and 50 mA). (Reaction conditions: each micropollutant concentration ~150 μ g/L, and specific ozone dose = 1.5 mg O₃/mg dissolved organic carbon (DOC)).

Figure S2. Correlation analysis between experimentally measured and model predicted micropollutant abatement by the E-peroxone process at different currents (0 mA (ozonation), 10 mA, 30 mA, and 50 mA). n is the number of data points, R^2 is the correlation coefficient, and $S_{y,x}$ is the standard deviation of the linear regression with an equation y=x. (Reaction conditions: each micropollutant concentration ~150 µg/L, and specific ozone dose = 1.5 mg O₃/mg dissolved organic carbon (DOC)).

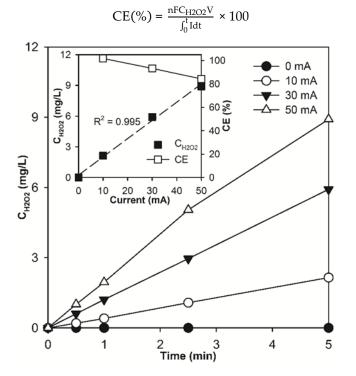
To get further into the degradation pathway, the contribution of directly electrolysis (f_E), O₃ oxidation (f_{O3}), and •OH oxidation ($f_{•OH}$) to micropollutant abatement were calculated at 2 min of E-peroxone process when O₃ was completely depleted according to Equations (S1)–(S3) and presented in Figure. S3.

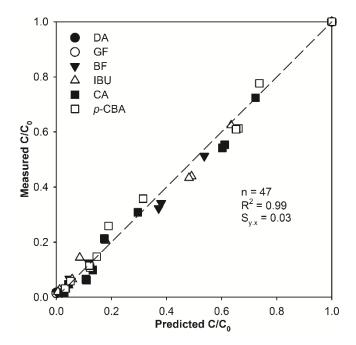

$$f_{E} = \frac{k_{E}t}{k_{\bullet OH} \int [\bullet OH] dt + k_{O3} \int [O_{3}] dt + k_{E}t}$$
(S1)

$$f_{O_3} = \frac{k_{O_3} \int [O_3] dt}{k_{\bullet OH} \int [\bullet OH] dt + k_{O_3} \int [O_3] dt + k_E t}$$
(S2)

$$f_{\bullet OH} = \frac{k_{\bullet OH} \int [\bullet OH] dt}{k_{\bullet OH} \int [\bullet OH] dt + k_{O3} \int [O_3] dt + k_E t}$$
(S3)

where k_E is the pseudo-first order rate constant during electrolysis, and k_{03} and k_{0H} are the second order rate constants with O₃ and \bullet OH, respectively.


As shown in Figure. S3, direct electrolysis played negligible role on the removal of all tested micropollutants, with fE less than 0.2%. This is mainly due to its rather slow abatement kinetics limited by mass transfer of pollutants to the electrode surface [1,2]. As a consequence, O₃ and •OH oxidation dominated micropollutant abatements during the E-peroxone process. For DA and GF with $k_{O3} > 10^4 \,\mathrm{M^{-1}} \,\mathrm{s^{-1}}$, they were mainly abated via O₃ oxidation (fo₃ > 93%). In comparison, BF, IBU, CA, and *p*-CBA have relatively low reactivity with O₃ ($k_{O3} < 590 \,\mathrm{M^{-1}} \,\mathrm{s^{-1}}$), and thus •OH oxidation dominated their abatements during the E-peroxone process (f•OH \geq 81%).


Figure S3. Contribution of electrolysis (fE), O₃ oxidation (fo₃), and •OH oxidation (f•OH) to micropollutant abatement during the E-peroxone treatment of surface water. (Reaction conditions: current = 30 mA, each micropollutant concentration ~150 μ g/L, and specific ozone dose = 1.5 mg O₃/mg dissolved organic carbon (DOC)).

(S4)

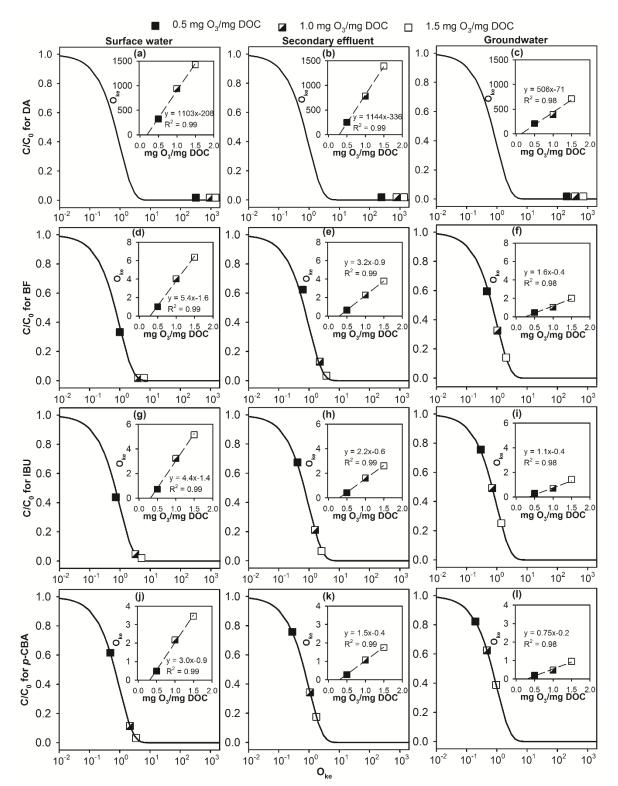

The current efficiency (CE) of H_2O_2 electro-generation was calculated according to Equation (S4), where n is the number of electrons consumed for converting O_2 to H_2O_2 (2 electrons), F is the Faraday constant (96,486 C/mol), C_{H2O2} is the concentration of H₂O₂ electro-generated (M), V is the solution volume (L), I is the current (A), and t is the reaction time (s).

Figure S4. Electro-generation of H_2O_2 from cathodic O_2 reduction in the surface water at different currents. The inset plot shows H_2O_2 concentration at 5 min and H_2O_2 electro-generation current efficiency (CE) as a function of applied currents. (Reaction conditions: volume = 250 mL, current = 30 mA, Pt anode = 2 cm × 2 cm, carbon-PTFE cathode = 2 cm × 5 cm).

Figure S5. Correlation analysis between experimentally measured and model predicted micropollutant abatement by the E-peroxone process at different specific ozone dose (0.5, 1.0, and 1.5 mg O₃/mg dissolved organic carbon (DOC)). n is the number of data points, R² is the correlation coefficient, and S_{y,x} is the standard deviation of the linear regression with an equation y=x. (Reaction conditions: each micropollutant concentration ~150 µg/L, and current = 30 mA).

Figure S6. Abatement efficiency of (**a**–**c**) diclofenac (DA), (**d**–**f**) bezafibrate (BF), (g–i) ibuprofen (IBU), and (**j**–**l**) para-chlorobenzoic acid (*p*-CBA) as a function of their O_{ke} values during the E-peroxone treatment of surface water (left column), secondary effluent (middle column), and groundwater (right column) with varying specific ozone (O₃) doses. The symbols in the plot represent experimentally measured results; the solid lines are model simulation using Equation (3). The inset plot shows linear regression between specific O₃ dose and the O_{ke} value observed for selected micropollutant during the E-peroxone process. (Reaction conditions: current = 30 mA, and each micropollutant concentration ~150 µg/L).

Compound	ko₃ (M⁻¹ s⁻¹)	<i>k</i> ∙он (М ⁻¹ s ⁻¹)
Diclofenac (DA)	6.8 × 10 ⁵ [3]	7.5 × 10 ⁹ [3]
Gemfibrozil (GF)	5×10^4 [4]	10×10^{9} [4]
Bezafibrate (BF)	590 [3]	7.4 × 10 ⁹ [3]
Ibuprofen (IBU)	9.6 [3]	7.4 × 10 ⁹ [3]
Clofibric acid (CA)	< 20 [5]	5.2 × 10 ⁹ [5]
<i>para</i> -chlorobenzoic (<i>p</i> -CBA)	≤ 0.15 [6]	5 × 10 ⁹ [6]

Table 1. Model compounds used in this study and their second-order reaction rate constants with O_3 and $\bullet OH$.

Table 2. Main water quality parameters of the surface water, secondary effluent, and groundwater used in this study.

Parameter	Surface water	Secondary effluent	Groundwater	
pН	8.2	8.0	8.1	
DOC (mg/L)	4.0	6.2	1.2	
HCO₃⁻ (mg/L)	131	196	295	
CO _{3²⁻} (mg/L)	2	3	6	
Alkalinity (mg/L as CaCO3)	110	165	248	
Conductivity (µS/cm)	272	857	683	
TDS (mg/L)	102	522	371	

Table 3. Operational parameters for UPLC/MS-MS analysis and the limits of detection (LOD) and quantification (LOQ) of the tested micropollutants.

Compound	Precursor ion (<i>m</i> / <i>z</i>)	Product ion (<i>m</i> / <i>z</i>)	Declustering potential (V)	Collision energy (eV)	LOD (µg/L)	LOQ (µg/L)
DA	293.9	250.0	-15.0	-12.0	0.8	2.6
GF	249.3	121.0	-25.0	-18.0	0.6	2.1
BF	360.0	274.0	-40.0	-16.0	0.8	2.6
IBU	204.9	161.0	-24.0	-16.7	0.9	2.9
CA	212.8	126.9	-15.0	-20.0	0.8	2.6
p-CBA	154.9	111.0	-35.0	-18.0	1.4	4.7

References

- 1. Yao, W.; Wang, X.; Yang, H.; Yu, G.; Deng, S.; Huang, J.; Wang, B.; Wang, Y. Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. *Water Res.* **2016**, *88*, 826–835. doi:10.1016/j.watres.2015.11.024.
- 2. Chaplin, B.P. Critical review of electrochemical advanced oxidation processes for water treatment applications. *Environ. Sci. Process. Impacts* **2014**, *16*, 1182–1203. doi:10.1039/C3EM00679D.
- 3. Huber, M.M.; Canonica, S.; Park, G.-Y.; von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. *Environ. Sci. Technol.* **2003**, *37*, 1016–1024, doi:10.1021/es025896h.
- 4. Von Sonntag, C.; von Gunten, U. *Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications*; IWA Publishing: London, UK, 2012.
- Huber, M.M.; Gobel, A.; Joss, A.; Hermann, N.; Loffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. *Environ. Sci. Technol.* 2005, *39*, 4290–4299, doi:10.1021/es048396s.
- 6. Elovitz, M.S.; von Gunten, U. Hydroxyl radical/ozone ratios during ozonation processes I: The R_{ct} concept. *Ozone Sci. Eng.* **1999**, *21*, 239–260. doi:10.1080/01919519908547239.