Harvesting at the Right Time: Maturity and its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Normal Maturity Index
2.2. Enological Parameters
2.3. Qualitative and Quantitative Analyses of Volatile Compounds
2.3.1. Higher Alcohols
2.3.2. Esters
2.3.3. Fatty Acids
2.3.4. Aldehydes and Ketones
2.3.5. Terpenes and Norisoprenoids
2.4. Odor Activity Values (OAVs) and Aroma Profiles
2.5. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Plant Material and Field Trial
3.2. Sample Collection and Analysis of the General Index
3.3. Small-Scale Wine Making
3.4. Headspace Solid-Phase Microextraction (HS-SPME)
3.5. GC-MS Analysis
3.6. Volatile Compound Identification and Quantification
3.7. Odor Activity Values (OAVs) and Aroma Series
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Selli, S.; Cabaroglu, T.; Canbas, A.; Erten, H.; Nurgel, C.; Lepoutre, J.P.; Gunata, Z. Volatile composition of red wine from cv. Kalecik Karasι grown in central Anatolia. Food Chem. 2004, 85, 207–213. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Y.; Wu, B.; Fang, J.; Li, S. Volatile compounds evolution of three table grapes with different flavour during and after maturation. Food Chem. 2011, 128, 823–830. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: Volume 2. The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons Ltd.: Chichester, UK, 2006; pp. 109–139. [Google Scholar]
- Gonzalez-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine aroma compounds in grapes: A critical review. Crit. Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Styger, G.; Prior, B.; Bauer, F. Wine flavor and aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- Bindon, K.; Varela, C.; Kennedy, J.; Holt, H.; Herderich, M. Relationships between harvest time and wine composition in Vitis vinifera L. cv. Cabernet Sauvignon 1. Grape and wine chemistry. Food Chem. 2013, 138, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Park, S.K.; Morrison, J.C.; Adams, D.O.; Noble, A.C. Distribution of free and glycosidically bound monoterpenes in the skin and mesocarp of Muscat of Alexandria grapes during development. J. Agric. Food Chem. 1991, 39, 514–518. [Google Scholar] [CrossRef]
- Cordonnier, R.; Bayonne, C. Les composantes varietales et prefermentaires de l’ arome des vins. Rev. Fr. Doenol. 1978, 24, 67–77. [Google Scholar]
- Boubée, D.R.D.; Leeuwen, C.V.; Dubourdieu, D. Organoleptic impact of 2-methoxy-3-isobutylpyrazine on red Bordeaux and Loire wines. Effect of environmental conditions on concentrations in grapes during ripening. J. Agric. Food Chem. 2000, 48, 4830. [Google Scholar] [CrossRef]
- Schelezki, O.J.; Suklje, K.; Boss, P.K.; Jeffery, D.W. Comparison of consecutive harvests versus blending treatments to produce lower alcohol wines from Cabernet Sauvignon grapes: Impact on wine volatile composition and sensory properties. Food Chem. 2018, 259, 196–206. [Google Scholar] [CrossRef]
- Sabon, I.; De, R.G.; Kotseridis, Y.; Bertrand, A. Determination of volatile compounds in Grenache wines in relation with different terroirs in the Rhone Valley. J. Agric. Food Chem. 2002, 50, 6341–6345. [Google Scholar] [CrossRef]
- Gomez, E.; Martinez, A.; Laencina, J. Changes in volatile compounds during maturation of some grape varieties. J. Sci. Food Agric. 1995, 67, 229–233. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; González-San José, M.L. Polyphenols and colour variability of red wines made from grapes harvested at different ripeness grade. Food Chem. 2006, 96, 197–208. [Google Scholar] [CrossRef]
- Adams, D.O. Phenolics and ripening in grape berries. Am. J. Enol. Vitic. 2006, 57, 249–256. [Google Scholar] [CrossRef]
- Ollat, N.; Diakou-Verdin, P.; Carde, J.P.; Barrieu, F.; Gaudillère, J.P.; Moing, A. Grape berry development: A review. Fabula 2002, 36, 109–131. [Google Scholar] [CrossRef]
- Orduña, R.M.D.; Sant’Ana, A.D.S. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Girard, B.; Fukumoto, L.; Mazza, G.; Delaquis, P.; Ewert, B. Volatile terpene constituents in maturing Gewurztraminer grapes from British Columbia. Am. J. Enol. Vitic. 2002, 53, 99–109. [Google Scholar] [CrossRef]
- Schneider, R.; Razungles, A. Effet du site, de la maturité et de l’éclairement des grappes sur la composition aromatique des baies de Vitis vinifera L. cv. Melon B. Bull. l’OIV 2002, 75, 269. [Google Scholar]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Effects of sugar concentration processes in grapes and wine aging on aroma compounds of sweet wines—A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1051–1071. [Google Scholar] [CrossRef]
- Mccarthy, M.G. The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Aust. J. Grape Wine Res. 2010, 3, 2–8. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Hatfield, J.M.; Jaudzems, V.G.; White, R.G.; Keller, M. Grape berry cv. Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss. Am. J. Enol. Vitic. 2004, 55, 121–127. [Google Scholar] [CrossRef]
- Krasnow, M.; Matthews, M.; Smith, R.; Benz, J.; Weber, E.; Shackel, K. Distinctive symptoms differentiate four common types of berry shrivel disorder in grape. Calif. Agric. 2008, 64, 155–159. [Google Scholar] [CrossRef]
- Song, J.; Fan, P.G.; Wu, B.H.; Li, S.H. Changes in soluble sugars and activities of related metabolic enzymes in grape berries during ripening and delayed harvest. Acta Hortic. Sin. 2007, 34, 823. [Google Scholar] [CrossRef]
- Ristic, R.; Bindon, K.; Francis, L.I.; Herderich, M.J.; Iland, P.G. Flavonoids and C13-norisoprenoids in Vitis vinifera L. cv. Shiraz: Relationships between grape and wine composition, wine colour and wine sensory properties. Aust. J. Grape Wine Res. 2010, 16, 369–388. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Kennedy, J.A. Mass spectrometric evidence for the formation of pigmented polymers in red wine. Aust. J. Grape Wine Res. 2003, 9, 210–220. [Google Scholar] [CrossRef]
- Suklje, K.; Zhang, X.; Antalick, G.; Clark, A.C.; Deloire, A.; Schmidtke, L.M. Berry shriveling significantly alters Shiraz (Vitis vinifera L.) grape and wine chemical composition. J. Agric. Food Chem. 2016, 64, 870–880. [Google Scholar] [CrossRef]
- Jiang, B.; Xi, Z.M.; Luo, M.J.; Zhang, Z.W. Comparison on aroma compounds in Cabernet Sauvignon and Merlot wines from four wine grape-growing regions in China. Food Res. Int. 2013, 51, 482–489. [Google Scholar] [CrossRef]
- Peng, C.T.; Wen, Y.; Tao, Y.S.; Lan, Y.Y. Modulating the formation of Meili wine aroma by prefermentative freezing process. J. Agric. Food Chem. 2013, 61, 1542–1553. [Google Scholar] [CrossRef]
- Genovese, A.; Dimaggio, R.; Lisanti, M.T.; Piombino, P.; Moio, L. Aroma composition of red wines by different extraction methods and gas chromatography-SIM/mass spectrometry analysis. Ann. Chim. Rome 2010, 95, 383–394. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Villafuerte, L.; Medina, M. Comparison of odor-active compounds in sherry wines processed from ecologically and conventionally grown Pedro Ximenez grapes. J. Agric. Food Chem. 2009, 57, 968–973. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Xie, S.; Tang, Y.; Wang, P.; Song, C.; Duan, B.; Zhang, Z.; Meng, J. Influence of natural variation in berry size on the volatile profiles of Vitis vinifera L. cv. Merlot and Cabernet Gernischt grapes. PLoS ONE 2018, 13, e0201374. [Google Scholar] [CrossRef]
- Escudero, A.; Campo, E.; Farina, L.; Cacho, J.; Ferreira, V. Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J. Agric. Food Chem. 2007, 55, 4501–4510. [Google Scholar] [CrossRef]
- Forde, C.G.; Cox, A.; Williams, E.R.; Boss, P.K. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production. J. Agric. Food Chem. 2011, 59, 2573. [Google Scholar] [CrossRef]
- La Guerche, S.; Dauphin, B.; Pons, M.; Blancard, D.; Darriet, P. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J. Agric. Food Chem. 2006, 54, 9193–9200. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, Y.S.; Wen, Y.; Wang, H. Aroma evaluation of young Chinese Merlot wines with denomination of origin. S. Afr. J. Enol. Vitic. 2013, 34, 46–53. [Google Scholar] [CrossRef]
- Shinohara, T. Gas chromatographic analysis of volatile fatty acids in wines. J. Agric. Chem. 2006, 49, 2211–2212. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Ma, T.T.; Lan, T.; Ju, Y.L.; Cheng, G.; Que, Z.L.; Geng, T.H.; Fang, Y.L.; Sun, X.Y. Comparison on the nutritional properties and biological activities of kiwifruit (Actinidia) and their different forms products: How to make kiwifruit more nutritious and functional. Food Funct. 2019, 10, 1317–1329. [Google Scholar] [CrossRef]
- Song, C.Z.; Liu, M.Y.; Meng, J.F.; Shi, P.B.; Zhang, Z.W.; Xi, Z.M. Influence of foliage-sprayed zinc sulfate on grape quality and wine aroma characteristics of Merlot. Eur. Food Res. Technol. 2015, 242, 609–623. [Google Scholar] [CrossRef]
- OIV. International Oenological Codex. 2006. Available online: http://www.oiv.int/oiv (accessed on 19 May 2006).
- Zhang, M.; Xu, Q.; Duan, C.; Qu, W.; Wu, Y. Comparative study of aromatic compounds in young red wines from Cabernet Sauvignon, Cabernet Franc, and Cabernet Gernischet varieties in China. J. Food Sci. 2007, 72, C248–C252. [Google Scholar] [CrossRef]
- Kandylis, P.; Drouza, C.; Bekatorou, A.; Koutinas, A.A. Scale-up of extremely low temperature fermentations of grape must by wheat supported yeast cells. Bioresour. Technol. 2010, 101, 7484–7491. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. Factors influencing the aroma composition of Chardonnay wines. J. Agric. Food Chem. 2014, 62, 6512. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | Treatments | |||
---|---|---|---|---|
CK | T1 | T2 | T3 | |
Berry weight (g) | 1.33 ± 0.02a | 1.31 ± 0.03a | 1.26 ± 0.02b | 1.21 ± 0.03c |
Berry length (mm) | 13.07 ± 0.83a | 12.34 ± 1.25b | 12.26 ± 0.91b | 12.19 ± 0.94b |
Total soluble solid (%) | 21.8 ± 0.03d | 22.7 ± 0.17c | 23.0 ± 0.06b | 23.5 ± 0.03a |
Titratable acidity (g/L tartaric acid) | 4.48 ± 0.12a | 4.10 ± 0.06b | 4.01 ± 0.10b | 3.83 ± 0.05b |
Total anthocyanins (mg ME/g) | 9.91 ± 0.04c | 10.89 ± 0.18b | 11.21 ± 0.23ab | 11.68 ± 0.16a |
Total tannins (mg CE/g) | 29.07 ± 1.04a | 26.00 ± 0.87a | 23.56 ± 0.82b | 23.81 ± 0.33b |
Total polyphenols (mg GAE/g) | 41.61 ± 0.69a | 42.15 ± 0.65a | 39.85 ± 0.60ab | 38.43 ± 0.98b |
Parameters | Treatment | |||
---|---|---|---|---|
CK | T1 | T2 | T3 | |
Reducing sugars (g/L) | 2.28 ± 0.10b | 2.79 ± 0.08a | 2.27 ± 0.05b | 2.75 ± 0.10a |
Titratable acidity (g/L) | 5.72 ± 0.01a | 5.32 ± 0.01b | 5.16 ± 0.01c | 5.05 ± 0.00d |
pH | 3.94 ± 0.00d | 4.01 ± 0.00c | 4.05 ± 0.01b | 4.07 ± 0.01a |
Alcoholic strength by volume (% vol) | 11.86 ± 0.08c | 12.39 ± 0.07b | 12.46 ± 0.03a | 12.41 ± 0.04a |
Dry extract (g/L) | 27.41 ± 0.23b | 27.52 ± 0.14b | 29.47 ± 0.08a | 29.49 ± 0.16a |
Volatile acidity (g/L) | 0.43 ± 0.00b | 0.46 ± 0.00a | 0.42 ± 0.00b | 0.39 ± 0.00c |
Total anthocyanins (mg/L) | 89.59 ± 4.74d | 104.00 ± 2.04c | 123.48 ± 1.32a | 120.09 ± 1.34b |
Total polyphenols (mg/L) | 1279.28 ± 12.27b | 1458.02 ± 21.23a | 1338.86 ± 21.92b | 1208.88 ± 29.99c |
Total tannins (mg/L) | 494.70 ± 26.48a | 412.06 ± 14.68b | 343.52 ± 8.71c | 345.07 ± 22.34c |
No. | Volatile Aroma Compounds | Treatments | Descriptor | Odor Threshold | Aroma Series a | |||
---|---|---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | (μg/L) | ||||
Higher Alcohols | ||||||||
1 | 1-Hexanol | 5502.53 ± 45.96c | 5576.00 ± 204.51c | 9670.76 ± 244.94a | 7590.31 ± 340.23b | Green, grass [28,29] | 8000 [28,29,30,31] | 3 |
2 | (E)-3-Hexen-1-ol | 91.42 ± 0.25c | 94.35 ± 3.63c | 203.4 ± 9.67a | 155.24 ± 8.79b | Green, floral [28,29] | 400 [28,29,30] | 3 |
3 | (Z)-3-Hexen-1-ol | 147.81 ± 0.87a | 139.49 ± 9.74a | 145.35 ± 2.82a | 138.59 ± 11.96a | Green [28,29] | 400 [28,29,30] | 3, 8 |
4 | 1-Octen-3-ol | 33.21 ± 0.20a | 34.70 ± 2.17a | 37.10 ± 2.20a | 34.46 ± 0.49a | Mushroom [33] | 20 [33] | 6 |
5 | Isopentanol | 435327.94 ± 9826.01b | 515279.31 ± 8921.83a | 511874.25 ± 10960.07a | 498725.37 ± 16620.34a | Whiskey, nail polish [29,33] | 30,000 [28,29,30] | 7, 5, 8 |
6 | 4-Methyl-1-pentanol | 4.98 ± 0.14ab | 5.4 ± 0.54a | 3.89 ± 0.02c | 4.37 ± 0.1bc | almond, toasty [33] | 50,000 [28,31] | 4, 5, 9 |
7 | 3-Methyl-1-pentanol | 371.49 ± 8.78b | 476 ± 30.32a | 423.45 ± 8.27ab | 376.18 ± 15.96b | vinous, herbaceous, cacao [33] | 50,000 [31] | 3, 7 |
8 | 1-Heptanol | 539.16 ± 5.48c | 841.82 ± 19.44b | 1432.52 ± 30a | 1450.37 ± 71.85a | Grape, sweet [28,29] | 1000 [28,29] | 1 |
9 | 2-Heptanol | 6.23 ± 0.23b | 6.05 ± 0.22b | 8.88 ± 0.52a | 9.46 ± 0.28a | Fruity, moldy, musty [28] | 70 [28] | 1, 6 |
10 | 1-Octanol | 25.56 ± 0.4b | 23.75 ± 1.01b | 29.16 ± 0.53a | 31.89 ± 1.17a | Intense citrus, roses [28,29] | 120 [28,29] | 2 |
11 | 1-Nonanol | 21.36 ± 0.69c | 23.06 ± 0.16c | 34.64 ± 0.06a | 26 ± 1.54b | Green [29] | 600 [29] | 3 |
12 | 2-Nonanol | 4.07 ± 0.08b | 1.86 ± 1.01c | 6.3 ± 0.19a | 5.83 ± 0.29a | unpleasant floral [28] | 58 [28] | - |
13 | (Z)-6-Nonen-1-ol | 7.93 ± 0.1d | 10.03 ± 0.02c | 15.66 ± 0.23a | 11.16 ± 0.65b | - | Unknown | |
14 | 1-Decanol | 4.11 ± 0.07ab | 3.99 ± 0.12b | 4.34 ± 0.02a | 3.96 ± 0.06b | Orange flowery, special fatty [28,29] | 400 [28,29] | 1, 2, 7, 8 |
15 | Phenylethyl alcohol | 107270.06 ± 805.29c | 134569.36 ± 2530.81b | 146411.1 ± 588.25a | 143031.88 ± 177.6a | Sweet rose [28,29] | 14,000 [28,29] | 2 |
Subtotal | 549357.86 ± 9069.56b | 657085.16 ± 15251.97a | 670300.79 ± 10666.27a | 651595.07 ± 16895.79a | ||||
Esters | ||||||||
16 | Ethyl acetate | 55638.68 ± 1217.48c | 73720.51 ± 2084.52a | 65773.82 ± 952.74b | 54064.14 ± 1882.87c | Ethereal fruity [28,29] | 7500 [28,29,30,31] | 1 |
17 | Isoamyl acetate | 756.79 ± 166.15a | 867.13 ± 112.66a | 792.31 ± 86.13a | 370.43 ± 70.58b | Intense banana [28,29] | 30 [28,29,30,31] | 1 |
18 | Hexyl acetate | 3.23 ± 0.14a | 2.22 ± 0.55a | 2.25 ± 0.53a | 2.39 ± 0.22a | Pleasant fruity, pear, floral [28,29] | 670 [28,29] | 1, 2 |
19 | 2-Phenethyl acetate | 126.92 ± 0.57b | 116.55 ± 0.73c | 175.35 ± 1.37a | 71.91 ± 1.33d | Pleasant, floral [29] | 650 [29,30] | 2 |
20 | Ethyl hexanoate | 288.85 ± 5.14b | 202.25 ± 60.01b | 519.39 ± 28.64a | 427.21 ± 39.1a | Green apple, fruity, strawberry, anise [29,31] | 5 [29] | 1 |
21 | Ethyl heptanoate | 1.49 ± 0.03b | 2.43 ± 0.41b | 4.05 ± 0.34a | 4.28 ± 0.4a | Pineapple, fruity [29] | 220 [29] | 1 |
22 | Ethyl lactate | 19942.01 ± 767.99c | 32095.67 ± 1039.95a | 25796.29 ± 138.13b | 19743.84 ± 50.72c | Lactic, raspberry [28,32] | 150,000 [32] | 1, 8 |
23 | Ethyl octanoate | 30.17 ± 0.17ab | 27.04 ± 2.9b | 32.28 ± 1.05ab | 34.46 ± 1.57a | Pineapple, pear, floral [28] | 2 [28] | 1, 2 |
24 | Ethyl decanoate | 91.83 ± 0.85b | 91.19 ± 1.97b | 91.81 ± 3.46b | 114.00 ± 5.82a | Fruity, fatty, pleasant [28,29] | 200 [28,29] | 1 |
25 | Ethyl laurate | 30.95 ± 0.07b | 31.77 ± 0.25a | 32.11 ± 0.15a | 32.17 ± 0.31a | Oily, fatty, fruity [28] | 1500 [28] | 1, 8 |
26 | Ethyl salicylate | 17.64 ± 0a | 17.64 ± 0.02a | 17.60 ± 0.01b | 17.55 ± 0a | - | Unknown | |
27 | Ethyl phenylacetate | 10.51 ± 0c | 13.19 ± 0.04a | 13.42 ± 0.05a | 11.34 ± 0.33b | rose, floral [33] | 250 [31] | 2 |
28 | Methyl octanoate b | 0.72 ± 0.01a | 0.61 ± 0.61a | 0.66 ± 0.04a | 0.69 ± 0.05a | Intense citrus [28] | 200 [28,30] | 1 |
29 | Methyl salicylate | 13.49 ± 0.88a | 11.48 ± 0.46b | 7.31 ± 0.15c | 6.76 ± 0.05c | - | 40 [33] | |
30 | Butyl butanoate | 12.85 ± 0.2a | 15.22 ± 1.13a | 17.34 ± 0.52a | 18.97 ± 4.14a | - | Unknown | |
31 | Isoamyl hexanoate | 2.99 ± 0.01b | 3.13 ± 0.02b | 3.46 ± 0.07a | 3.58 ± 0.11a | Pineapple, cheese [33] | 1000 [33] | 1 |
Subtotal | 76969.13 ± 1822.77c | 107214.97 ± 3154.25a | 93289.11 ± 934.22b | 74922.23 ± 1955.94c | ||||
Fatty acids | ||||||||
32 | Butanoic acid | 1516.75 ± 77.97b | 1621.66 ± 111.64ab | 1835.97 ± 21.25a | 1881.57 ± 78.1a | - | Unknown | |
33 | Hexanoic acid b | 17.56 ± 0.98b | 24.15 ± 2.63b | 42.91 ± 1.33a | 46.46 ± 2.95a | Cheese, unpleasant copra, oil odor [28] | 3000 [28,31] | 8 |
34 | Heptanoic acid | 55.30 ± 0c | 58.98 ± 2.15b | 65.14 ± 0.39a | 66.91 ± 0.47a | Fatty, dry [28] | 3000 [28] | 8 |
35 | Octanoic acid | 854.27 ± 10.2c | 913.68 ± 74.9bc | 1087.27 ± 38.21ab | 1181.95 ± 106.65a | Rancid, harsh, cheese, fatty acid [28,29] | 500 [28,29,30] | 8 |
36 | n-Decanoic acid | 183.69 ± 0.58a | 185.22 ± 3.39a | 189.44 ± 0.7a | 189.8 ± 0.6a | Sour, fatty, unpleasant [29] | 1000 [29,30] | 8 |
37 | 2-Methyl-propanoic acid | 4388.59 ± 266.85b | 5425.47 ± 381.78a | 5273.97 ± 132.72ab | 5677.87 ± 248.70a | Fatty [28] | 2300 [30] | 8 |
Subtotal | 7016.16 ± 356.57b | 8228.17 ± 194.71ab | 8494.69 ± 193.21a | 9044.56 ± 437.48a | ||||
Aldehydes and ketones | ||||||||
38 | Hexanal | 12.65 ± 2.51b | 10.39 ± 0.4b | 20.94 ± 1.7a | 12.66 ± 0.77b | Intense green, grass [29] | 5 [29] | 3 |
39 | Nonanal b | 2.00 ± 0.07a | 2.37 ± 1.03a | 2.44 ± 0.16a | 2.75 ± 0.41a | Green, slightly pungent [29] | 15 [29,30] | 3 |
40 | Decanal | 0.94 ± 0.11b | 0.97 ± 0.02b | 1.96 ± 0.12a | 1.24 ± 0.08b | Grassy, orange, skin-like [28] | 10 [30] | 1, 8 |
41 | Benzaldehyde | 98.85 ± 0.18d | 304.07 ± 1.72a | 136.91 ± 2.72c | 163.13 ± 6.02b | Roasted, almond [28,29] | 2000 [28,29] | 9 |
42 | Benzeneacetaldehyde b | 2.26 ± 0.10c | 2.77 ± 0.06b | 3,19 ± 0.03a | 3.03 ± 0.04a | Floral, rose, honey [34] | 5 [30] | 2, 5 |
43 | Acetoin | 215.27 ± 2.11a | 221.52 ± 4.72a | 219.5 ± 1.55a | 225.96 ± 7.21a | Fatty, cream [31] | 150,000 [30] | 8 |
Subtotal | 331.97 ± 4.67d | 542.08 ± 5.77a | 384.93 ± 2.82c | 408.77 ± 0.03b | ||||
Terpenes and norisoprenoids | ||||||||
44 | Citronellol | 6.33 ± 0.02d | 7.15 ± 0.04c | 9.25 ± 0.14a | 8.4 ± 0.05b | Fruity rosy, green lemon [28,29] | 100 [28,29,30] | 2 |
45 | Linalool | 25.18 ± 5.29a | 63.9 ± 27.12a | 44.88 ± 0.63a | 42.04 ± 11.74a | Flowery, fruity, muscat [28,29] | 25 [28,29] | 2, 5 |
46 | Geraniol | 18.52 ± 0.71a | 18.19 ± 0.53a | 18.55 ± 0.72a | 18.76 ± 0.82a | Citric [29] | 30 [29,30] | 1 |
47 | β-damascenone | 9.51 ± 0.25a | 7.09 ± 0.02c | 8.22 ± 0.01b | 7.4 ± 0.1c | Honey, sweet [29] | 0.05 [29,30] | 1, 2, 5 |
Subtotal | 59.53 ± 5.73a | 96.33 ± 27.63a | 80.90 ± 0.22a | 76.60 ± 12.41a | ||||
Total (mg/L) | 633734.65 ± 11259.30b | 773167.71 ± 19442.11a | 772550.42 ± 11675.33a | 736047.23 ± 18899.27a |
Volatile Aroma Compounds | Treatments | |||
---|---|---|---|---|
CK | T1 | T2 | T3 | |
Higher Alcohols | ||||
1-Hexanol | 0.69 ± 0.01c | 0.7 ± 0.03c | 1.21 ± 0.03a | 0.95 ± 0.04b |
(E)-3-Hexen-1-ol | 0.23 ± 0.00c | 0.24 ± 0.01c | 0.51 ± 0.02a | 0.39 ± 0.02b |
(Z)-3-Hexen-1-ol | 0.37 ± 0.00a | 0.35 ± 0.02a | 0.36 ± 0.01a | 0.35 ± 0.03a |
1-Octen-3-ol | 1.66 ± 0.01a | 1.74 ± 0.15a | 1.85 ± 0.11a | 1.72 ± 0.02a |
Isopentanol | 14.51 ± 0.33b | 17.18 ± 0.40a | 17.06 ± 0.37a | 16.62 ± 0.55a |
1-Heptanol | 0.54 ± 0.01c | 0.84 ± 0.02b | 1.43 ± 0.03a | 1.45 ± 0.07a |
2-Heptanol | 0.09 ± 0.00b | 0.09 ± 0.00b | 0.13 ± 0.01a | 0.14 ± 0.00a |
1-Octanol | 0.21 ± 0.00b | 0.2 ± 0.01b | 0.24 ± 0.00a | 0.27 ± 0.01a |
2-Nonanol | 0.07 ± 0.00b | 0.03 ± 0.02c | 0.11 ± 0.00a | 0.10 ± 0.00a |
Phenylethyl alcohol | 7.66 ± 0.06c | 9.61 ± 0.18b | 10.46 ± 0.04a | 10.22 ± 0.01a |
Esters | ||||
Ethyl acetate | 7.42 ± 0.16c | 9.83 ± 0.28a | 8.77 ± 0.13b | 7.21 ± 0.25c |
Isoamyl acetate | 25.23 ± 5.54a | 28.9 ± 3.76a | 26.41 ± 2.87a | 12.35 ± 2.35b |
2-Phenethyl acetate | 0.2 ± 0.00b | 0.18 ± 0.00c | 0.27 ± 0.00a | 0.11 ± 0.00d |
Ethyl hexanoate | 57.77 ± 1.03b | 40.45 ± 12b | 103.88 ± 5.73a | 85.44 ± 7.82a |
Ethyl lactate | 0.13 ± 0.01c | 0.21 ± 0.01a | 0.17 ± 0.00b | 0.13 ± 0.00c |
Ethyl octanoate | 15.08 ± 0.09ab | 13.52 ± 1.45b | 16.14 ± 0.53ab | 17.23 ± 0.78a |
Ethyl decanoate | 0.46 ± 0.00b | 0.46 ± 0.01b | 0.46 ± 0.02b | 0.57 ± 0.03a |
Methyl salicylate | 0.34 ± 0.02a | 0.29 ± 0.01b | 0.18 ± 0.00c | 0.17 ± 0.00c |
Fatty acids | ||||
Octanoic acid | 1.71 ± 0.02c | 1.83 ± 0.15bc | 2.17 ± 0.08ab | 2.36 ± 0.21a |
n-Decanoic acid | 0.18 ± 0.00a | 0.19 ± 0.00a | 0.19 ± 0.00a | 0.19 ± 0.00a |
2-Methyl-propanoic acid | 1.91 ± 0.12b | 2.36 ± 0.17a | 2.29 ± 0.10ab | 2.47 ± 0.19b |
Aldehydes and ketones | ||||
Hexanal | 2.53 ± 0.5b | 2.08 ± 0.08b | 4.19 ± 0.34a | 2.53 ± 0.15b |
Decanal | 0.09 ± 0.01b | 0.1 ± 0.00b | 0.2 ± 0.01a | 0.12 ± 0.01b |
Benzaldehyde | 0.05 ± 0.00d | 0.15 ± 0.00a | 0.07 ± 0.00c | 0.08 ± 0.00b |
Terpenes and norisoprenoids | ||||
Linalool | 1.01 ± 0.21a | 2.56 ± 1.08a | 1.8 ± 0.03a | 1.68 ± 0.47a |
Geraniol | 0.62 ± 0.02a | 0.61 ± 0.02a | 0.62 ± 0.02a | 0.63 ± 0.03a |
β-damascenone | 190.29 ± 5.01a | 141.72 ± 0.47c | 164.38 ± 0.11b | 148.06 ± 2.00c |
No. | Volatile Compounds | CAS | RI a | ID b | Manufacturers | Purity | Internal Standards | Quantitative Ion | Calibration Curves | R2 | Range (µg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1-Hexanol | 111273 | 1334 | A | Sigma-Aldrich | 0.98 | 1-Hexanol | 56 | Y = 3803.37X-10.73 | 0.97 | 1.26–20610 |
2 | (E)-3-Hexen-1-ol | 928972 | 1346 | A | Sigma-Aldrich | 0.97 | (E)-3-Hexen-1-ol | 41 | Y = 7363.48X-43.64 | 0.96 | 0.75–406 |
3 | (Z)-3-Hexen-1-ol | 928961 | 1366 | A | Sigma-Aldrich | 0.98 | (Z)-3-Hexen-2-ol | 82 | Y = 10310.57X + 3.49 | 0.96 | 0.25–1033 |
4 | 1-Octen-3-ol | 3391864 | 1541 | A | Sigma-Aldrich | 0.98 | 1-Octen-3-ol | 57 | Y = 452.22X + 0.23 | 0.97 | 0.52–133 |
5 | Isopentanol | 123513 | 1189 | A | Sigma-Aldrich | 0.99 | Isopentanol | 55 | Y = 18884.34X + 8.20 | 0.98 | 25–36440 |
6 | 4-Methyl-1-pentanol | 626891 | 1297 | B | 3-Methyl-1-pentanol | 82 | Y = 271.24X − 0.66 | 0.97 | 3–5685 | ||
7 | 3-Methyl-1-pentanol | 589355 | 1310 | A | Sigma-Aldrich | 0.97 | 3-Methyl-1-pentanol | 56 | Y = 6019.10X + 6.37 | 0.97 | 3–11370 |
8 | 1-Heptanol | 111706 | 1437 | A | Sigma-Aldrich | 0.98 | 1-Heptanol | 88 | Y = 2106.31X + 8.31 | 0.97 | 6–732 |
9 | 2-Heptanol | 543497 | 1303 | B | 1-Heptanol | 45 | Y = 2106.31X + 8.32 | 0.97 | 6–732 | ||
10 | 1-Octanol | 111875 | 1433 | A | Sigma-Aldrich | 0.99 | 1-Octanol | 56 | Y = 641.39X − 2.68 | 0.98 | 1–69 |
11 | 1-Nonanol | 143088 | 1648 | B | (Z)-3-Nonen-1-ol | 68 | Y = 692.85X + -0.75 | 0.98 | 0.16–163 | ||
12 | 2-Nonanol | 628999 | 1501 | A | Sigma-Aldrich | 0.99 | 2-Nonanol | 45 | Y = 80.67X − 0.37 | 0.99 | 0.08–81 |
13 | (Z)-6-Nonen-1-ol | 35854865 | 1706 | A | Sigma-Aldrich | 0.97 | (Z)-6-nonen-1-ol | 41 | Y = 689.12X + 0.63 | 0.97 | 2–1112 |
14 | 1-Decanol | 112301 | 1766 | A | Sigma-Aldrich | 0.99 | 1-Decanol | 70 | Y = 147.26X − 1.81 | 0.99 | 2–605 |
15 | Phenylethyl alcohol | 60128 | 1910 | A | Sigma-Aldrich | 0.99 | Phenylethyl alcohol | 91 | Y = 3638.40X + 764.85 | 0.97 | 80–2569 |
16 | Ethyl acetate | 141786 | 745 | A | Sigma-Aldrich | 0.99 | Ethyl acetate | 71 | Y = 16104.02X + 102.45 | 1 | 1336–158350 |
17 | Isoamyl acetate | 123922 | 1122 | A | Sigma-Aldrich | 0.95 | Isoamyl acetate | 57 | Y = 299.43X-8.54 | 0.98 | 1–2888 |
18 | Hexyl acetate | 142927 | 1262 | A | Sigma-Aldrich | 0.99 | Hexyl acetate | 84 | Y = 112.91X-7.23 | 0.99 | 1–1540 |
19 | 2-Phenethyl acetate | 103457 | 1816 | A | Sigma-Aldrich | 0.99 | 2-Phenethyl acetate | 104 | Y = 130.41X + 1.40 | 0.94 | 3–116 |
20 | Ethyl hexanoate | 123660 | 1223 | A | Sigma-Aldrich | 0.99 | Ethyl hexanoate | 88 | Y = 171.73X-11.01 | 0.98 | 3–2680 |
21 | Ethyl heptanoate | 106309 | 1322 | A | Sigma-Aldrich | 0.98 | Ethyl heptanoate | 88 | Y = 52.65X-0.25 | 1 | 0.06–118 |
22 | Ethyl lactate | 97643 | 1350 | A | Sigma-Aldrich | 0.98 | Ethyl lactate | 45 | Y = 73602.47X + 487.39 | 0.97 | 85–22640 |
23 | Ethyl octanoate | 106321 | 1429 | A | Sigma-Aldrich | 0.99 | Ethyl octanoate | 88 | Y = 5.63X + 17.22 | 0.97 | 20–3227 |
24 | Ethyl decanoate | 110383 | 1635 | A | Sigma-Aldrich | 0.99 | Ethyl decanoate | 88 | Y = 49.10X + 28.54 | 0.96 | 49–1580 |
25 | Ethyl laurate | 106332 | 1842 | A | Sigma-Aldrich | 0.98 | Ethyl laurate | 88 | Y = 49.10X + 28.54 | 1 | 3–355 |
26 | Ethyl salicylate | 118616 | 1813 | A | Sigma-Aldrich | 0.98 | Ethyl salicylate | 120 | Y = 64.11X + 17.39 | 0.99 | 1.33–341 |
27 | Ethyl phenylacetate | 101973 | 1785 | A | Sigma-Aldrich | 0.99 | Ethyl phenylacetate | 91 | Y = 215.77X + 0.22 | 0.98 | 0.69–176 |
28 | Methyl octanoate | 111115 | 1377 | A | Sigma-Aldrich | 0.99 | Methyl octanoate | 74 | Y = 32.16X + 0.06 | 1.00 | 1–138 |
29 | Methyl salicylate | 119368 | 1778 | A | Sigma-Aldrich | 0.99 | Methyl salicylate | 120 | Y = 500.00X + 3.56 | 0.97 | 0.79–1612 |
30 | Butyl butanoate | 109217 | 1868 | B | Ethyl butanoate | 71 | Y = 2819.02X-5.03 | 1 | 0.33–2740 | ||
31 | Isopentyl hexanoate | 2198610 | 1458 | A | Sigma-Aldrich | 0.98 | Isopentyl hexanoate | 70 | Y = 33.39X + 2.24 | 0.98 | 0.24–500 |
32 | Butanoic acid | 107926 | 1612 | A | Sigma-Aldrich | 0.99 | Butanoic acid | 60 | Y = 52865.86X + 119.94 | 0.97 | 31–4000 |
33 | Hexanoic acid | 142621 | 1837 | A | Sigma-Aldrich | 0.99 | Hexanoic acid | 60 | Y = 4039.10X + 768.38 | 0.98 | 102–1625 |
34 | Heptanoic acid | 111148 | 1945 | A | Sigma-Aldrich | 0.99 | Heptanoic acid | 60 | Y = 1856.05X + 55.30 | 0.94 | 20–635 |
35 | Octanoic acid | 124072 | 2053 | A | Sigma-Aldrich | 0.99 | Octanoic acid | 60 | Y = 4351.97X + 40.72 | 0.96 | 141–2254 |
36 | n-Decanoic acid | 334485 | 2262 | A | Sigma-Aldrich | 0.99 | Decanoic acid | 60 | Y = 1371.48X-129.36 | 0.99 | 9–1126 |
37 | 2-Methyl-propanoic acid | 79312 | 1590 | B | Butanoic acid | 43 | Y = 52865.86X + 119.94 | 0.97 | 31–4000 | ||
38 | Hexanal | 66251 | 1099 | B | (E)-2-Hexenal, | 44 | Y = 2957.82X-26.15 | 0.98 | 10–2530 | ||
39 | Nonanal | 124196 | 1382 | B | (E)-2-Nonenal | 57 | Y = 317.92X + 2.21 | 0.99 | 3–188 | ||
40 | Decanal | 112312 | 1502 | A | Sigma-Aldrich | 0.98 | Decanal | 43 | Y = 156.50X-0.34 | 0.97 | 0.13–130 |
41 | Benzaldehyde | 100527 | 1515 | A | Sigma-Aldrich | 0.99 | Benzaldehyde | 77 | Y = 561.57X + 3.66 | 0.99 | 1.5–288 |
42 | Benzeneacetaldehyde | 122781 | 1639 | A | Sigma-Aldrich | 0.99 | Benzeneacetaldehyde | 91 | Y = 5800.28X-0.77 | 0.94 | 13–831 |
43 | Acetoin | 513860 | 1298 | A | Sigma-Aldrich | 0.96 | Acetoin | 45 | Y = 3211.64X + 180.55 | 0.95 | 211–59467 |
44 | Citronellol | 106229 | 1757 | A | Sigma-Aldrich | 0.95 | Citronellol | 41 | Y = 348.91X + 0.28 | 0.99 | 1–66 |
45 | Linalool | 78706 | 1532 | A | Sigma-Aldrich | 0.97 | Linalool | 71 | Y = 119.55X-0.07 | 0.98 | 0.03–31 |
46 | Geraniol | 106241 | 1780 | A | Sigma-Aldrich | 0.99 | Geraniol | 69 | Y = 503.61X + 17.29 | 0.98 | 2.77–355 |
47 | β-damascenone | 23726934 | 1823 | A | Sigma-Aldrich | 0.98 | (E)-β-damascenone | 177 | Y = 130.17X + 0.34 | 1 | 0.57–580 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Wu, J.; Meng, J.; Shi, P.; Fang, Y.; Zhang, Z.; Sun, X. Harvesting at the Right Time: Maturity and its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Molecules 2019, 24, 2777. https://doi.org/10.3390/molecules24152777
Zhao T, Wu J, Meng J, Shi P, Fang Y, Zhang Z, Sun X. Harvesting at the Right Time: Maturity and its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Molecules. 2019; 24(15):2777. https://doi.org/10.3390/molecules24152777
Chicago/Turabian StyleZhao, Ting, Jiaying Wu, Jiangfei Meng, Pengbao Shi, Yulin Fang, Zhenwen Zhang, and Xiangyu Sun. 2019. "Harvesting at the Right Time: Maturity and its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine" Molecules 24, no. 15: 2777. https://doi.org/10.3390/molecules24152777
APA StyleZhao, T., Wu, J., Meng, J., Shi, P., Fang, Y., Zhang, Z., & Sun, X. (2019). Harvesting at the Right Time: Maturity and its Effects on the Aromatic Characteristics of Cabernet Sauvignon Wine. Molecules, 24(15), 2777. https://doi.org/10.3390/molecules24152777