The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Silverstein, T.P. The Real Reason Why Oil and Water Don’t Mix. J. Chem. Educ. 1998, 75, 116–118. [Google Scholar] [CrossRef]
- Kunz, W. Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 2010, 15, 34–39. [Google Scholar] [CrossRef]
- Nakamura, S.; Ogasawara, S.; Matuda, S.; Saito, I.; Fujimoto, K. Template Directed Reversible Photochemical Ligation of Oligodeoxynucleotides. Molecules 2012, 17, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Vaganova, E.; Rozenberg, M.; Dubnikova, F.; Danovich, D.; Yitzchaik, S. Acidity of the methyne group of poly(4-vinylpyridine) leads to side-chain protonation in pyridine. New J. Chem. 2015, 39, 5920–5922. [Google Scholar] [CrossRef]
- Graton, J.; Compain, G.; Besseau, F.; Bogdan, E.; Watts, J.M.; Mtashobya, L.; Wang, Z.; Weymouth-Wilson, A.; Galland, N.; Le Questel, J.-Y.; et al. Influence of Alcohol β-Fluorination on Hydrogen-Bond Acidity of Conformationally Flexible Substrates. Chem. Eur. J. 2017, 23, 2811–2819. [Google Scholar] [CrossRef] [PubMed]
- Linclau, B.; Peron, F.; Bogdan, E.; Wells, N.; Wang, Z.; Compain, G.; Fontenelle, C.Q.; Galland, N.; Le Questel, J.-Y.; Graton, J. Intramolecular OH···Fluorine Hydrogen Bonding in Saturated, Acyclic Fluorohydrins: The γ-Fluoropropanol Motif. Chem. Eur. J. 2015, 21, 17808–17816. [Google Scholar] [CrossRef] [PubMed]
- Boens, N.; Qin, W.; Baruah, M.; De Borggraeve, W.M.; Filarowski, A.; Smisdom, N.; Ameloot, M.; Crovetto, L.; Talavera, E.M.; Alvarez-Pez, J.M. Rational Design, Synthesis, and Spectroscopic and Photophysical Properties of a Visible-Light-Excitable, Ratiometric, Fluorescent Near-Neutral pH Indicator Based on BODIPY. Chem. Eur. J. 2011, 17, 10924–10934. [Google Scholar] [CrossRef]
- Heyne, B. Self-assembly of organic dyes in supramolecular aggregates. Photochem. Photobiol. Sci. 2016, 15, 1103–1114. [Google Scholar] [CrossRef]
- Manolova, Y.; Deneva, V.; Antonov, L.; Drakalska, E.; Momekova, D.; Lambov, N. The effect of the water on the curcumin tautomerism: A quantitative approach. Spectrochim. Acta A 2014, 132, 815–820. [Google Scholar] [CrossRef]
- Spano, F.C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 2010, 43, 429–439. [Google Scholar] [CrossRef]
- Eisfeld, A.; Briggs, J.S. The J- and H-bands of organic dye aggregates. Chem. Phys. 2006, 324, 376–384. [Google Scholar] [CrossRef]
- Yao, H.; Domoto, K.; Isohashi, T.; Kimura, K. In Situ Detection of Birefringent Mesoscopic H and J Aggregates of Thiacarbocyanine Dye in Solution. Langmuir 2005, 21, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K. Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution. Dyes Pigment. 2002, 53, 31–43. [Google Scholar] [CrossRef]
- Daum, S.; Reshetnikov, M.S.V.; Sisa, M.; Dumych, T.; Lootsik, M.D.; Bilyy, R.; Bila, E.; Janko, C.; Alexiou, C.; Herrmann, M.; et al. Lysosome-Targeting Amplifiers of Reactive Oxygen Species as Anticancer Prodrugs. Angew. Chem. Int. Ed. 2017, 56, 15545–15549. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.M.; Salaheldin, T.A.; Hassaneen, H.M.E.; Abdel-Aziz, H.M.; Khedr, M.A. Synthesis, Characterization and Molecular Docking of Novel Bioactive Thiazolyl-Thiazole Derivatives as Promising Cytotoxic Antitumor Drug. Molecules 2016, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Yusof, M.S.M.; Amin, N.M. Anti-Amoebic Properties of Carbonyl Thiourea Derivatives. Molecules 2014, 19, 5191–5204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, R.D.; Correa, N.M.; Biasutti, M.A.; Silber, J.J. Comparison between aqueous and nonaqueous AOT-heptane reverse micelles using acridine orange as molecular probe. Molecules 2000, 5, 553–554. [Google Scholar] [CrossRef]
- Falcone, R.D.; Correa, N.M.; Biasutti, M.A.; Silber, J.J. Acid−Base and Aggregation Processes of Acridine Orange Base in n-Heptane/AOT/Water Reverse Micelles. Langmuir 2002, 18, 2039–2047. [Google Scholar] [CrossRef]
- Amado, A.M.; Ramos, A.P.; Silva, E.R.; Borissevitch, I.E. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer. J. Lumin. 2016, 178, 288–294. [Google Scholar] [CrossRef]
- Falcone, R.D.; Correa, N.M.; Biasutti, M.A.; Silber, J.J. The use of acridine orange base (AOB) as molecular probe to characterize nonaqueous AOT reverse micelles. J. Colloid Interface Sci. 2006, 296, 356–364. [Google Scholar] [CrossRef]
- Vitagliano, V.; Ortona, O.; Sartorio, R.; Costantino, L. Association of acridine orange in nonaqueous solutions. J. Chem. Eng. Data 1985, 30, 7–10. [Google Scholar] [CrossRef]
- Lamm, M.E.; Neville, D., Jr. M. The Dimer Spectrum of Acridine Orange Hydrochloride. J. Phys. Chem. 1965, 69, 3872–3877. [Google Scholar] [CrossRef]
- Antonov, L.; Gergov, G.; Petrov, V.; Kubista, M.; Nygren, J. UV-Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water. Talanta 1999, 49, 99–106. [Google Scholar] [CrossRef]
- Costantino, L.; Guarino, G.; Ortona, O.; Vitagliano, V. Acridine orange association equilibrium in aqueous solution. J. Chem. Eng. Data 1984, 29, 62–66. [Google Scholar] [CrossRef]
- Jiménez-Millán, E.; Giner-Casares, J.J.; Muñoz, E.; Martín-Romero, M.T.; Camacho, L. Self-Assembly of Acridine Orange into H-Aggregates at the Air/Water Interface: Tuning of Orientation of Headgroup. Langmuir 2011, 27, 14888–14899. [Google Scholar] [CrossRef]
- Ortona, O.; Vitagliano, V.; Robinson, B.H. Dye interactions with surfactants in colloidal dispersions. J. Colloid Interface Sci. 1988, 125, 271–278. [Google Scholar] [CrossRef]
- Luchowski, R.; Krawczyk, S. Stark effect spectroscopy of exciton states in the dimer of acridine orange. Chem. Phys. 2003, 293, 155–166. [Google Scholar] [CrossRef]
- Mattia, C.A.; Mazzarella, L.; Vitagliano, V. Stacking interactions in the acridine dyes: Spectrophotometric data and crystal structure of acridine orange hydroiodide and acridine orange hydrochloride monohydrate. J. Crystallogr. Spectrosc. Res. 1984, 14, 71–87. [Google Scholar] [CrossRef]
- Mooi, S.M.; Heyne, B. Size Does Matter: How To Control Organization of Organic Dyes in Aqueous Environment Using Specific Ion Effects. Langmuir 2012, 28, 16524–16530. [Google Scholar] [CrossRef]
- Ryan, E.T.; Xiang, T.; Johnston, K.P.; Fox, M.A. Excited-State Proton Transfer Reactions in Subcritical and Supercritical Water. J. Phys. Chem. A 1997, 101, 1827–1835. [Google Scholar] [CrossRef]
- Pedzinski, T.; Marciniak, B.; Hug, G.L. Quenching of the excited singlet state of acridine and 10-methylacridinium cation by thio-organic compounds in aqueous solution. J. Photochem. Photobiol. A 2002, 150, 21–30. [Google Scholar] [CrossRef]
- Rozhkova, Y.; Gurinov, A.A.; Tolstoy, P.M.; Denisov, G.S.; Shenderovich, I.G.; Korotkov, V.I. Acridine - a Promising Fluorescence Probe of Non-Covalent Molecular Interactions. Z. Phys. Chem. 2013, 227, 857–868. [Google Scholar] [CrossRef]
- Rozhkova, Y.A.; Gurinov, A.A.; Orlova, A.O.; Maslov, V.G.; Shenderovich, I.G.; Korotkov, V.I. Spectrophotometric investigations of protonated forms of heterocyclic compounds. Opt. Spectrosc. 2012, 113, 275–278. [Google Scholar] [CrossRef]
- Grzesiek, S.; Otto, H.; Dencher, N.A. delta pH-induced fluorescence quenching of 9-aminoacridine in lipid vesicles is due to excimer formation at the membrane. Biophys. J. 1989, 55, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.; Kumar, G.S. Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques. J. Photochem. Photobiol. B 2016, 159, 169–178. [Google Scholar] [CrossRef]
- Voronova, E.D.; Golub, I.E.; Pavlov, A.A.; Belkova, N.V.; Filippov, O.A.; Epstein, L.M.; Shubina, E.S. Comprehensive Insight into the Hydrogen Bonding of Silanes. Chem. Asian, J. 2018, 13, 3084–3089. [Google Scholar] [CrossRef]
- Yandulov, D.V.; Caulton, K.G.; Belkova, N.V.; Shubina, E.S.; Epstein, L.M.; Khoroshun, D.V.; Musaev, D.G.; Morokuma, K. Diminishing π-Stabilization of an Unsaturated Metal Center: Hydrogen Bonding to OsHCl(CO)(PtBu2Me)2. J. Am. Chem. Soc. 1998, 120, 12553–12563. [Google Scholar] [CrossRef]
- Lesnichin, S.B.; Tolstoy, P.M.; Limbach, H.-H.; Shenderovich, I.G. Counteranion-dependent mechanisms of intramolecular proton transfer in aprotic solution. Phys. Chem. Chem. Phys. 2010, 12, 10373–10379. [Google Scholar] [CrossRef]
- Gurinov, A.A.; Lesnichin, S.B.; Limbach, H.-H.; Shenderovich, I.G. How Short is the Strongest Hydrogen Bond in the Proton-Bound Homodimers of Pyridine Derivatives? J. Phys. Chem. A 2014, 118, 10804–10812. [Google Scholar] [CrossRef]
- Gurinov, A.A.; Mauder, D.; Akcakayiran, D.; Findenegg, G.H.; Shenderovich, I.G. Does water affect the acidity of surfaces? The proton-donating ability of silanol and carboxylic acid groups at mesoporous silica. ChemPhysChem 2012, 13, 2282–2285. [Google Scholar] [CrossRef]
- Lorente, P.; Shenderovich, I.G.; Golubev, N.S.; Denisov, G.S.; Buntkowsky, G.; Limbach, H.-H. 1H/15N NMR chemical shielding, dipolar 15N,2H coupling and hydrogen bond geometry correlations in a novel series of hydrogen-bonded acid-base complexes of collidine with carboxylic acids. Magn. Reson. Chem. 2001, 39, S18–S29. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Burtsev, A.P.; Denisov, G.S.; Golubev, N.S.; Limbach, H.-H. Influence of the temperature-dependent dielectric constant on the H/D isotope effects on the NMR chemical shifts and the hydrogen bond geometry of the collidine–HF complex in CDF3/CDClF2 solution. Magn. Reson. Chem. 2001, 39, S91–S99. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Ip, B.; Gurinov, A.A.; Tolstoy, P.M.; Denisov, G.S.; Shenderovich, I.G.; Limbach, H.-H. Geometrical Features of Hydrogen Bonded Complexes Involving Sterically Hindered Pyridines. J. Phys. Chem. A 2006, 110, 10872–10879. [Google Scholar] [CrossRef]
- Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Heyden, M. Disassembling solvation free energies into local contributions—Toward a microscopic understanding of solvation processes. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2019, 9, e1390. [Google Scholar] [CrossRef]
- Kong, S.; Borissova, A.O.; Lesnichin, S.B.; Hartl, M.; Daemen, L.L.; Eckert, J.; Antipin, M.Yu.; Shenderovich, I.G. Geometry and Spectral Properties of the Protonated Homodimer of Pyridine in the Liquid and Solid States. A Combined NMR, X-ray Diffraction and Inelastic Neutron Scattering Study. J. Phys. Chem. A 2011, 115, 8041–8048. [Google Scholar] [CrossRef]
- Golubev, N.S.; Shenderovich, I.G.; Smirnov, S.N.; Denisov, G.S.; Limbach, H.-H. Nuclear Scalar Spin–Spin Coupling Reveals Novel Properties of Low-Barrier Hydrogen Bonds in a Polar Environment. Chem. Eur. J. 1999, 5, 492–497. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Buntkowsky, G.; Schreiber, A.; Gedat, E.; Sharif, S.; Albrecht, J.; Golubev, N.S.; Findenegg, G.H.; Limbach, H.-H. Pyridine-15N - A Mobile NMR Sensor for Surface Acidity and Surface Defects of Mesoporous Silica. J. Phys. Chem. B 2003, 107, 11924–11939. [Google Scholar] [CrossRef]
- Gurinov, A.A.; Rozhkova, Y.A.; Zukal, A.; Čejka, J.; Shenderovich, I.G. Mutable Lewis and Brønsted Acidity of Aluminated SBA-15 as Revealed by NMR of Adsorbed Pyridine-15N. Langmuir 2011, 27, 12115–12123. [Google Scholar] [CrossRef]
- Ip, B.C.K.; Shenderovich, I.G.; Tolstoy, P.M.; Frydel, J.; Denisov, G.S.; Buntkowsky, G.; Limbach, H.-H. NMR Studies of Solid Pentachlorophenol-4-Methylpyridine Complexes Exhibiting Strong OHN Hydrogen Bonds: Geometric H/D Isotope Effects and Hydrogen Bond Coupling Cause Isotopic Polymorphism. J. Phys. Chem. A 2012, 116, 11370–11387. [Google Scholar] [CrossRef]
- Shenderovich, I.G.; Lesnichin, S.B.; Tu, C.; Silverman, D.N.; Tolstoy, P.M.; Denisov, G.S.; Limbach, H.-H. NMR Studies of Active-Site Properties of Human Carbonic Anhydrase II by Using 15N-Labeled 4-Methylimidazole as a Local Probe and Histidine Hydrogen-Bond Correlations. Chem. Eur. J. 2015, 21, 2915–2929. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Aggregate | Concentration, M | Absorption,nm | Fluorescence Emission, nm | |
---|---|---|---|---|
AOH+ | Copartner | |||
Monomer | 10−5 | − | 490 | 529 (λe x= 492) [18] |
Homoaggregates | 10−4 | − | 470 | 634 (λex = 470) [18] |
Heteroaggregates with AcrH+ | 10−5 | 10−1 | 501 | 534 (λex = 500) |
Heteroaggregates with 9AAH+ | 10−5 | 4 × 10−2 | 508 | 538 (λex = 500) |
Aggregates with [B(C6H5)4]- | 10−5 | 10−2 | 480 and 460 | 615 (λex = 470) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenderovich, I.G. The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water. Molecules 2019, 24, 2816. https://doi.org/10.3390/molecules24152816
Shenderovich IG. The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water. Molecules. 2019; 24(15):2816. https://doi.org/10.3390/molecules24152816
Chicago/Turabian StyleShenderovich, Ilya G. 2019. "The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water" Molecules 24, no. 15: 2816. https://doi.org/10.3390/molecules24152816
APA StyleShenderovich, I. G. (2019). The Partner Does Matter: The Structure of Heteroaggregates of Acridine Orange in Water. Molecules, 24(15), 2816. https://doi.org/10.3390/molecules24152816