Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Mature Compost Addition at pH of 6
2.2. Effect of Mature Compost Addition at a pH of 7
3. Materials and Methods
3.1. Substrate and Inoculum
3.2. Experimental Set-Up
3.2.1. Batch Assays: FW with Mature Compost
3.2.2. Semi Continuous Operation
3.3. Analytical Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernández-Arévalo, T.; Lizarralde, I.; Fdz-Polanco, F.; Pérez-Elvira, S.; Garrido, J.; Puig, S.; Poch, M.; Grau, P.; Ayesa, E. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations. Water Res. 2017, 118, 272–288. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Yu, X.; Wang, K.; Shen, D. Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int. J. Hydrog. Energy 2016, 41, 21713–21720. [Google Scholar] [CrossRef]
- Braguglia, C.M.; Gallipoli, A.; Gianico, A.; Pagliaccia, P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018, 248, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef] [Green Version]
- Kourmentza, C.; Kornaros, M. Biotransformation of volatile fatty acids to polyhydroxyalkanoates by employing mixed microbial consortia: The effect of pH and carbon source. Bioresour. Technol. 2016, 222, 388–398. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, J.K.; Chandel, A.K.; Sharma, L.; Mallick, N.; Singh, S.P. Biomedical applications of microbially engineered polyhydroxyalkanoates: An insight into recent advances, bottlenecks, and solutions. Appl. Microbiol. Biotechnol. 2019, 103, 2007–2032. [Google Scholar] [CrossRef]
- Tong, J.; Chen, Y. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Res. 2009, 43, 2969–2976. [Google Scholar] [CrossRef]
- Lim, S.-J.; Choi, D.W.; Lee, W.G.; Kwon, S.; Chang, H.N. Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng. 2000, 22, 543–545. [Google Scholar] [CrossRef]
- Cavdar, P.; Yilmaz, E.; Tugtas, A.E.; Calli, B. Acidogenic fermentation of municipal solid waste and its application to bio-electricity production via microbial fuel cells (MFCs). Water Sci. Technol. 2011, 64, 789–795. [Google Scholar] [CrossRef]
- Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef]
- Lim, S.-J.; Kim, B.J.; Jeong, C.-M.; Choi, J.-D.-R.; Ahn, Y.H.; Chang, H.N. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour. Technol. 2008, 99, 7866–7874. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Chua, S.M.A.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Yin, B.; Liu, H.; Wang, Y.; Bai, J.; Liu, H.; Fu, B. Improving volatile fatty acids production by exploiting the residual substrates in post-fermented sludge: Protease catalysis of refractory protein. Bioresour. Technol. 2016, 203, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Belgiorno, V. Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason. Sonochem. 2013, 20, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Cheah, Y.K.; Vidal-Antich, C.; Dosta, J.; Mata-Álvarez, J. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Environ. Sci. Pollut. Res. 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rughoonundun, H.; Granda, C.; Mohee, R.; Holtzapple, M.T. Effect of thermochemical pretreatment on sewage sludge and its impact on carboxylic acids production. Waste Manag. 2010, 30, 1614–1621. [Google Scholar] [CrossRef]
- Hendriks, A.T.W.M.; Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 10–18. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Ariunbaatar, J.; Panico, A.; Esposito, G.; Pirozzi, F.; Lens, P.N.L. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 2014, 123, 143–156. [Google Scholar] [CrossRef]
- Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresour. Technol. 2011, 102, 592–599. [Google Scholar] [CrossRef]
- Bolzonella, D.; Battista, F.; Cavinato, C.; Gottardo, M.; Micolucci, F.; Lyberatos, G.; Pavan, P. Recent developments in biohythane production from household food wastes: A review. Bioresour. Technol. 2018, 257, 311–319. [Google Scholar] [CrossRef]
- Strazzera, G.; Battista, F.; Garcia, N.H.; Frison, N.; Bolzonella, D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. J. Environ. Manag. 2018, 226, 278–288. [Google Scholar] [CrossRef]
- Hu, Z.H.; Yu, H.Q. Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover. Process Biochem. 2005, 40, 2371–2377. [Google Scholar] [CrossRef]
- Wall, D.M.; Straccialini, B.; Allen, E.; Nolan, P.; Herrmann, C.; O’Kiely, P.; Murphy, J.D. Investigation of effect of particle size and rumen fluid addition on specific methane yields of high lignocellulose grass silage. Bioresour. Technol. 2015, 192, 266–271. [Google Scholar] [CrossRef]
- Fdez.-Güelfo, L.A.; Álvarez-Gallego, C.; Sales Márquez, D.; Romero García, L.I. Biological pretreatment applied to industrial organic fraction of municipal solid wastes (OFMSW): Effect on anaerobic digestion. Chem. Eng. J. 2011, 172, 321–325. [Google Scholar] [CrossRef]
- Álvarez-Gallego, C.J.; Fdez-Güelfo, L.A.; de los Romero Aguilar, A.M.; García, L.I.R. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant. Int. J. Mol. Sci. 2015, 16, 3769–3782. [Google Scholar] [CrossRef]
- Fdez.-Güelfo, L.A.; Álvarez-Gallego, C.; Sales, D.; Romero, L.I. The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW). Chem. Eng. J. 2011, 168, 249–254. [Google Scholar] [CrossRef]
- Gonzales, H.B.; Takyu, K.; Sakashita, H.; Nakano, Y.; Nishijima, W.; Okada, M. Biological solubilization and mineralization as novel approach for the pretreatment of food waste. Chemosphere 2005, 58, 57–63. [Google Scholar] [CrossRef]
- Kumar, A.N.; Mohan, S.V. Acidogenic valorization of vegetable waste for short chain carboxylic acids and biohydrogen production: Influence of pretreatment and pH. J. Clean. Prod. 2018, 203, 1055–1066. [Google Scholar] [CrossRef]
- Dahiya, S.; Sarkar, O.; Swamy, Y.V.; Venkata Mohan, S. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresour. Technol. 2015, 182, 103–113. [Google Scholar] [CrossRef]
- Naresh Kumar, A.; Venkata Mohan, S. Acidogenesis of waste activated sludge—Biohydrogen production with simultaneous short chain carboxylic acids. J. Environ. Chem. Eng. 2018, 6, 2983–2991. [Google Scholar] [CrossRef]
- Jankowska, E.; Chwiałkowska, J.; Stodolny, M.; Oleskowicz-Popiel, P. Effect of pH and retention time on volatile fatty acids production during mixed culture fermentation. Bioresour. Technol. 2015, 190, 274–280. [Google Scholar] [CrossRef]
- Garcia, N.H.; Strazzera, G.; Frison, N.; Bolzonella, D. Volatile fatty acids production from household food waste. Chem. Eng. Trans. 2018, 64, 103–108. [Google Scholar]
- Ding, H.H.; Chang, S.; Liu, Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresour. Technol. 2017, 244, 989–995. [Google Scholar] [CrossRef]
- Sun, J.; Guo, L.; Li, Q.; Zhao, Y.; Gao, M.; She, Z.; Wang, G. Structural and functional properties of organic matters in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) after heat pretreatment with waste sludge. Bioresour. Technol. J. 2016, 219, 614–623. [Google Scholar] [CrossRef]
- Kuruti, K.; Nakkasunchi, S.; Begum, S.; Juntupally, S.; Arelli, V.; Anupoju, G.R. Rapid generation of volatile fatty acids (VFA) through anaerobic acidification of livestock organic waste at low hydraulic residence time (HRT). Bioresour. Technol. 2017, 238, 188–193. [Google Scholar] [CrossRef]
- Moretto, G.; Valentino, F.; Pavan, P.; Majone, M.; Bolzonella, D. Optimization of urban waste fermentation for volatile fatty acids production. Waste Manag. 2019, 92, 21–29. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association, American Water Works Association. Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
Sample Availability: Samples of the compounds in this article are not available from the authors. |
Parameter | Units | 0% | 2.5% | 3.5% | 4.5% | FW Only | Compost Only |
---|---|---|---|---|---|---|---|
Food Waste weight | g | 84.75 | 82.63 | 81.79 | 80.94 | 200 | - |
% VS of Food Waste in the mixture | % | 50 | 44 | 41 | 39 | 100 | - |
Compost weight | g | - | 5 | 7 | 9 | - | 27 |
% VS of Compost in the mixture | % | - | 13 | 17 | 21 | - | 100 |
Inoculum weight | g | 115.25 | 112.36 | 111.21 | 110.06 | - | - |
% VS of Inoculum in the mixture | % | 50 | 44 | 41 | 39 | - | - |
Initial VS content | % | 5.36 | 5.77 | 6.24 | 6.52 | 6.81 | 1.18 |
Initial soluble COD | g COD/L | 36.95 | 34.64 | 34.56 | 35.14 | 41.22 | 5.21 |
Soluble COD at day 10 | g COD/L | 47.09 | 50.87 | 49.95 | 52.22 | 55.51 | 5.18 |
Initial NH4+-N | mg NH4+-N/L | 355 | 345 | 353 | 339 | 47 | 1 |
NH4+-N at day 10 | mg NH4+-N/L | 1027 | 1058 | 1033 | 1058 | 458 | 16 |
VFA concentration and distribution at day 10 | |||||||
VFA concentration | g COD/L | 9.82 | 10.70 | 10.59 | 10.22 | 2.68 | 0.03 |
Acetic Acid | % COD | 21.5 | 22.3 | 22.0 | 22.7 | 79.0 | 85.2 |
Propionic Acid | % COD | 0.5 | 0.6 | 0.7 | 0.6 | 4.8 | - |
Isobutyric Acid | % COD | 2.0 | 1.8 | 1.8 | 1.9 | 2.1 | - |
Butyric Acid | % COD | 21.0 | 23.6 | 23.8 | 24.5 | 4.9 | 7.1 |
Isovaleric Acid | % COD | 5.7 | 5.3 | 5.0 | 5.3 | 0.7 | - |
Valeric Acid | % COD | 0.5 | 0.7 | 0.7 | 0.7 | 2.1 | - |
Isocaproic Acid | % COD | 0.2 | 0.2 | 0.2 | 0.2 | 0.5 | - |
Hexanoic Acid | % COD | 47.4 | 44.6 | 44.9 | 43.1 | 5.2 | 7.7 |
Heptanoic Acid | % COD | 1.0 | 0.9 | 0.8 | 0.9 | 0.7 | - |
Fermenter | Phase | 1 | 2 | |||||
---|---|---|---|---|---|---|---|---|
Stage | 1 | 2 | 3 | 4 | 1 | 2 | 3 | |
Period (Days) | 0–14 | 15–34 | 35–84 | 85–114 | 115–146 | 147–168 | 168–198 | |
A | pH | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
HRT (days) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | |
Compost (% w/w) | - | - | - | - | - | - | - | |
B | pH | 6 | 6 | 6 | 6 | 6 | 6 | 7 |
HRT (days) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 5 | |
Compost (% w/w) | - | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | - | |
C | pH | 6 | 6 | 6 | 6 | 7 | 7 | 7 |
HRT (days) | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 5 | 5 | |
Compost (% w/w) | - | - | 3.5 | 1.5 | 2.5 | 2.5 | 2.5 |
Parameters | Units | FW1 | FW2 | FW3 | FW4 | FW5 | FW6 | FW7 | FW8 | FW9 | FW10 | FW11 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | Days | 1–20 | 21–40 | 41–57 | 58–72 | 73–96 | 97–114 | 115–132 | 133–145 | 146–155 | 156–180 | 181–198 | |
FERMENTER A | pH | - | 5.74 ± 0.33 | 5.83 ± 0.27 | 5.91 ± 0.16 | 5.95 ± 0.20 | 5.91 ± 0.17 | 5.92 ± 0.21 | 5.90 ± 0.35 | 5.95 ± 0.27 | 5.90 ± 0.28 | 5.99 ± 0.13 | 6.05 ± 0.17 |
VFA | g/L | 5.54 ± 0.68 | 7.34 ± 0.85 | 9.60 ± 0.57 | 9.42 ± 1.26 | 5.67 ± 1.74 | 4.15 ± 0.79 | 3.85 ± 0.78 | 5.39 ± 1.09 | 4.47 ± 1.03 | 6.18 ± 1.00 | 3.85 ± 0.64 | |
sCOD | g/L | 46.3 ± 6.4 | 48.1 ± 3.7 | 49.9 ± 2.5 | 48.5 ± 1.6 | 43.4 ± 3.5 | 46.0 ± 2.4 | 47.3 ± 5.6 | 45.7 ± 1.6 | 28.8 ± 5.9 | 35.2 ± 6.8 | 27.2 ± 3.69 | |
CODVFA/sCOD | % | 20.4 ± 3.4 | 22.3 ± 3.1 | 26.8 ± 2.4 | 29.5 ± 1.8 | 21.6 ± 9.2 | 12.1 ± 2.7 | 12.2 ± 4.5 | 16.1 ± 3.7 | 25.6 ± 3.9 | 27.6 ± 3.5 | 19.6 ± 2.0 | |
NH4+-N | g NH4+-N/L | 0.62 ± 0.27 | 0.52 ± 0.04 | 0.67 ± 0.04 | 0.39 ± 0.21 | 0.21 ± 0.06 | 0.25 ± 0.07 | - | 0.46 ± 0.07 | 0.59 ±0.02 | 0.81 ± 0.12 | 0.95 ± 0.15 | |
VFA yield | mgVFAeff/gVSinf | 103.7 ± 29.9 | 120.5 ± 8.9 | 159.8 ± 8.1 | 174.8 ± 19.0 | 156.8 ± 59.4 | 100.4 ± 18.8 | 111.6 ± 14.8 | 78.7 ± 15.7 | 78.4 ± 12.8 | 107.4 ± 22.4 | 68.7 ± 12.2 | |
Acetic acid | % VS | 53.7 ± 9.2 | 55.8 ± 4.7 | 60.3 ± 3.7 | 59.0 ± 2.8 | 58.3 ± 3.4 | 64.1 ± 3.6 | 68.9 ± 9.9 | 57.8 ± 5.6 | 51.0 ± 4.0 | 49.9 ± 4.1 | 49.6 ± 3.1 | |
Propionic acid | % VS | 1.79 ± 0.25 | 1.31 ± 0.15 | 1.22 ± 0.11 | 0.96 ± 0.57 | 1.48 ± 0.54 | 1.64 ± 0.57 | 0.57 ± 0.55 | 0.77 ± 0.28 | 0.79 ± 0.26 | 0.79 ± 0.19 | 0.95 ± 0.20 | |
Isobutyric acid | % VS | 0.82 ± 0.12 | 0.71 ± 0.06 | 0.72 ± 0.10 | 0.70 ± 0.09 | 0.58 ± 0.14 | 0.75 ± 0.06 | 0.38 ± 0.34 | 0.53 ± 0.24 | 1.05 ± 0.38 | 1.17 ± 0.29 | 1.59 ± 0.20 | |
Butyric acid | % VS | 11.6 ± 3.0 | 11.2 ± 2.4 | 12.2 ± 1.9 | 10.7 ± 1.4 | 11.4 ± 1.0 | 7.4 ± 1.4 | 6.2 ± 2.6 | 11.2 ± 1.9 | 17.1 ± 0.9 | 17.2 ± 2.7 | 17.3 ± 1.8 | |
Isovaleric acid | % VS | 1.82 ± 0.38 | 1.75 ± 0.28 | 1.86 ± 0.31 | 1.94 ± 0.32 | 1.27 ± 0.24 | 1.29 ± 0.29 | 0.91 ± 0.44 | 2.03 ± 0.72 | 3.36 ± 1.50 | 4.09 ± 1.17 | 5.38 ± 0.99 | |
Valeric acid | % VS | 0.83 ± 0.12 | 0.58 ± 0.10 | 0.56 ± 0.05 | 0.55 ± 0.07 | 0.72 ± 0.20 | 0.91 ± 0.10 | 0.46 ± 0.45 | 0.49 ± 0.33 | 0.49 ± 0.25 | 0.63 ± 0.16 | 0.79 ± 0.31 | |
FERMENTER B | pH | - | 5.72 ± 0.33 | 6.01 ± 0.21 | 6.14 ± 0.16 | 6.02 ± 0.12 | 6.01 ± 0.10 | 6.14 ± 0.20 | 6.18 ± 0.18 | 6.05 ± 0.11 | 5.94 ± 0.15 | 6.47 ± 0.54 | 7.00 ± 0.21 |
VFA | g/L | 5.67 ± 0.83 | 8.74 ± 0.91 | 10.30 ± 0.81 | 10.60 ± 0.95 | 7.22 ± 1.51 | 6.21 ± 0.89 | 4.81 ± 0.70 | 6.15 ± 1.51 | 4.96 ± 0.42 | 7.88 ± 1.50 | 9.20 ± 1.09 | |
sCOD | g/L | 46.1 ± 6.3 | 49.0 ± 0.7 | 49.1 ± 7.3 | 47.6 ± 7.4 | 49.1 ± 5.6 | 47.4 ± 3.2 | 46.3 ± 6.7 | 44.8 ± 1.3 | 30.3 ± 3.0 | 51.4 ± 20.3 | 40.3 ± 0.5 | |
CODVFA/sCOD | % | 20.8 ± 4.4 | 27.4 ± 3.8 | 34.6 ± 6.2 | 39.2 ± 7.1 | 25.7 ± 7.0 | 19.3 ± 1.4 | 18.8 ± 2.9 | 21.5 ± 2.6 | 29.4 ± 1.1 | 28.6 ± 10.1 | 34.4 ± 1.1 | |
NH4+-N | g NH4+-N/L | 0.63 ± 0.28 | 0.54 ± 0.02 | 0.83 ± 0.18 | 0.55 ± 0.31 | 0.28 ± 0.07 | 0.36 ± 0.08 | - | 0.56 ± 0.22 | 0.56 ± 0.27 | 0.88 ± 0.24 | 1.31 ± 0.01 | |
VFA yield | mgVFAeff/gVSinf | 104.4 ± 29.0 | 144.6 ± 12.8 | 181.5 ± 7.1 | 197.9 ± 19.0 | 203.7 ± 54.3 | 152.8 ± 11.9 | 140.0 ± 3.9 | 91.7 ± 8.2 | 88.5 ± 5.0 | 135.6 ± 28.1 | 140.4 ± 25.4 | |
Acetic acid | % VS | 57.0 ± 6.3 | 44.2 ± 3.7 | 44.6 ± 2.3 | 39.4 ± 2.7 | 43.7 ± 5.9 | 45.7 ± 2.1 | 38.5 ± 6.9 | 38.4 ± 12.4 | 22.4 ± 4.8 | 25.7 ± 5.1 | 42.1 ± 4.0 | |
Propionic acid | % VS | 1.71 ± 0.30 | 1.18 ± 0.08 | 1.98 ± 0.50 | 1.75 ± 0.28 | 1.45 ± 0.32 | 1.74 ± 0.07 | 0.37 ± 0.19 | 0.75 ± 0.16 | 0.63 ± 0.19 | 0.88 ± 0.26 | 5.16 ± 2.04 | |
Isobutyric acid | % VS | 0.78 ± 0.12 | 0.60 ± 0.04 | 1.13 ± 0.30 | 1.08 ± 0.18 | 0.75 ± 0.12 | 0.93 ± 0.07 | 0.62 ± 0.14 | 1.04 ± 0.33 | 1.19 ± 0.41 | 1.61 ± 0.35 | 1.95 ± 0.19 | |
Butyric acid | % VS | 10.6 ± 2.8 | 20.0 ± 2.3 | 21.7 ± 2.0 | 23.5 ± 2.7 | 23.5 ± 3.5 | 18.9 ± 0.8 | 20.5 ± 4.1 | 20.9 ± 5.4 | 38.2 ± 8.3 | 27.8 ± 3.8 | 17.9 ± 3.2 | |
Isovaleric acid | % VS | 1.70 ± 0.45 | 1.46 ± 0.30 | 2.43 ± 0.43 | 2.30 ± 0.53 | 1.15 ± 0.29 | 1.69 ± 0.14 | 1.23 ± 0.22 | 2.62 ± 0.78 | 2.71 ± 1.22 | 4.03 ± 0.98 | 4.14 ± 0.42 | |
Valeric acid | % VS | 0.78 ± 0.13 | 0.61 ± 0.05 | 1.21 ± 0.41 | 1.26 ± 0.19 | 0.89 ± 0.14 | 1.00 ± 0.05 | 0.45 ± 0.23 | 0.51 ± 0.16 | 0.76 ± 0.08 | 0.95 ± 0.27 | 3.97 ± 1.42 | |
FERMENTER C | pH | - | 5.66 ± 0.36 | 5.83 ± 0.30 | 6.19 ± 0.17 | 6.02 ± 0.12 | 6.00 ± 0.11 | 6.16 ± 0.20 | 6.81 ± 0.42 | 7.07 ± 0.06 | 6.82 ± 0.13 | 6.99 ± 0.11 | 6.96 ± 0.19 |
VFA | g/L | 5.54 ± 0.71 | 7.17 ± 1.13 | 10.2 ± 0.6 | 10.6 ± 0.7 | 7.25 ± 1.80 | 5.68 ± 0.65 | 6.40 ± 1.49 | 11.0 ± 1.0 | 11.6 ± 0.7 | 15.3 ± 2.1 | 10.7 ± 1.5 | |
sCOD | g/L | 46.2 ± 6.0 | 48.4 ± 2.5 | 47.4 ± 5.4 | 51.7 ± 6.8 | 48.6 ± 8.2 | 48.5 ± 2.8 | 52.2 ± 12.1 | 60.0 ± 3.5 | 43.8 ± 1.4 | 59.3 ± 18.4 | 44.5 ± 1.2 | |
CODVFA/sCOD | % | 13.6 ± 2.2 | 13.4 ± 2.6 | 21.8 ± 3.1 | 21.0 ± 3.9 | 15.6 ± 3.4 | 10.8 ± 0.6 | 13.3 ± 4.5 | 19.2 ± 2.1 | 27.1 ± 1.7 | 27.1 ± 6.0 | 23.1 ± 2.2 | |
NH4+-N | g NH4+-N/L | 0.63 ± 0.28 | 0.50 ± 0.03 | 0.77 ±0.19 | 0.55 ± 0.33 | 0.27 ± 0.06 | 0.33 ± 0.08 | - | 0.74 ± 0.29 | 1.12 ± 0.01 | 1.46 ± 0.19 | 1.56 ± 0.09 | |
VFA yield | mgVFAeff/gVSinf | 101.6 ± 25.9 | 118.7 ± 21.5 | 179.0 ± 12.4 | 195.1 ± 9.8 | 205.8 ± 59.3 | 141.9 ± 13.2 | 190.0 ± 13.6 | 180.7 ± 15.4 | 202.9 ± 6.2 | 250.6 ± 41.6 | 199.4 ± 39.0 | |
Acetic acid | % VS | 57.0 ± 7.6 | 58.6 ± 4.2 | 49.3 ± 4.4 | 41.9 ± 3.9 | 42.6 ± 3.4 | 43.1 ± 1.3 | 49.6 ± 4.7 | 53.0 ± 1.7 | 53.7 ± 1.2 | 50.2 ± 2.9 | 48.7 ± 3.0 | |
Propionic acid | % VS | 1.79 ± 0.28 | 1.26 ± 0.17 | 1.77 ± 0.60 | 1.61 ± 0.31 | 1.52 ± 0.34 | 1.78 ± 0.06 | 0.79 ± 0.32 | 7.33 ± 1.72 | 7.52 ± 0.7 | 7.69 ± 1.48 | 4.62 ± 0.94 | |
Isobutyric acid | % VS | 0.79 ± 0.13 | 0.73 ± 0.10 | 1.10 ± 0.37 | 1.05 ± 0.19 | 0.72 ± 0.11 | 0.87 ± 0.08 | 0.69 ± 0.05 | 1.12 ± 0.18 | 1.29 ± 0.19 | 1.71 ± 0.91 | 1.67 ± 0.19 | |
Butyric acid | % VS | 10.1 ± 2.5 | 9.4 ± 1.8 | 19.5 ± 3.3 | 23.1 ± 3.3 | 24.8 ± 2.5 | 18.0 ± 2.1 | 20.4 ± 1.3 | 17.7 ± 1.3 | 17.1 ± 0.5 | 17.2 ± 1.6 | 18.4 ± 2.8 | |
Isovaleric acid | % VS | 1.72 ± 0.45 | 1.77 ± 0.33 | 2.30 ± 0.45 | 2.12 ± 0.29 | 1.10 ± 0.26 | 1.69 ± 0.15 | 1.19 ± 0.31 | 1.66 ± 0.4 | 2.01 ± 0.32 | 2.63 ± 0.49 | 3.44 ± 0.65 | |
Valeric acid | % VS | 0.81 ± 0.13 | 0.56 ± 0.08 | 1.03 ± 0.40 | 1.09 ± 0.21 | 0.93 ± 0.13 | 1.00 ± 0.04 | 0.64 ± 0.17 | 3.39 ± 2.02 | 5.32 ± 0.37 | 5.58 ± 0.67 | 4.63 ± 1.49 |
Units | 0% | 2.5% | 3.5% | 4.5% | FW Only | Compost Only | |
---|---|---|---|---|---|---|---|
Food Waste weight | g | 44.50 | 43.39 | 42.95 | 42.50 | 200 | - |
% VS of Food Waste in the mixture | % | 50 | 43 | 41 | 39 | 100 | - |
Compost weight | g | - | 5 | 7 | 9 | - | 9 |
% VS of Compost in the mixture | % | - | 13 | 18 | 22 | - | 100 |
Inoculum weight | g | 155.50 | 151.61 | 150.05 | 148.50 | - | - |
% VS of Inoculum in the mixture | % | 50 | 43 | 41 | 39 | - | - |
Initial VS content | % | 2.32 | 2.65 | 2.89 | 2.97 | 9.59 | 0.40 |
Initial soluble COD | g COD/L | 40.56 | 39.54 | 39.14 | 38.73 | 35.61 | 6.53 |
Final soluble COD | g COD/L | 48.47 | 47.88 | 49.06 | 42.93 | n.a | 6.86 |
Initial NH4+-N | mg NH4+-N/L | 728 | 734 | 727 | 680 | n.a | 7 |
Final NH4+-N | mg NH4+-N/L | 1164 | 1635 | 1724 | 1803 | n.a. | 195 |
VFA Concentration and Distribution at Day 10 | |||||||
VFA concentration | g COD/L | 12.94 | 13.28 | 13.43 | 11.74 | 5.18 | 0.23 |
Acetic Acid | % COD | 37.5 | 37.4 | 38.2 | 35.9 | 76.2 | 53.0 |
Propionic Acid | % COD | 6.8 | 7.3 | 7.5 | 7.3 | 13.5 | - |
Isobutyric Acid | % COD | 2.6 | 2.5 | 2.6 | 2.6 | 2.9 | - |
Butyric Acid | % COD | 18.4 | 19.6 | 19.4 | 19.4 | 1.2 | 22.0 |
Isovaleric Acid | % COD | 5.7 | 5.3 | 5.2 | 5.4 | 1.1 | - |
Valeric Acid | % COD | 1.3 | 1.4 | 1.4 | 1.5 | 1.6 | - |
Isocaproic Acid | % COD | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | - |
Hexanoic Acid | % COD | 25.7 | 24.8 | 24.3 | 26.3 | 1.6 | 24.9 |
Heptanoic Acid | % COD | 1.7 | 1.6 | 1.4 | 1.5 | 1.5 | - |
Units | FW1 | FW2 | FW3 | FW4 | FW5 | FW6 | FW7 | FW8 | FW9 | FW10 | FW11 | Range | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period | Days | 1–20 | 21–40 | 41–57 | 58–72 | 73–96 | 97–114 | 115–132 | 133–145 | 146-155 | 156–180 | 181–198 | - |
pH | - | 4.33 ± 0.61 | 6.54 ± 0.34 | 6.62 ± 0.75 | 6.46 ± 0.79 | 6.65 ± 0.23 | 6.67 ± 0.42 | 7.09 ± 0.40 | 6.11 ± 1.49 | 6.96 ± 1.15 | 5.73 ± 1.28 | 5.17 ± 0.85 | 4.33–7.09 |
Total Solids (TS) | % w/w | 5.88 ± 1.63 | 7.31 ± 1.10 | 7.27 ± 0.35 | 6.57 ± 0.52 | 4.76 ± 0.38 | 4.45 ± 0.15 | 4.71 ± 0.42 | 7.03 ± 0.44 | 7.57 ± 0.96 | 6.39 ± 0.56 | 6.10 ± 1.23 | 4.45–7.57 |
Volatile Solids (VS) | % w/w | 5.51 ± 1.68 | 6.12 ± 0.75 | 5.71 ± 0.24 | 5.46 ± 0.43 | 3.83 ± 0.24 | 3.78 ± 0.26 | 3.90 ± 0.28 | 6.40 ± 0.84 | 6.43 ± 1.03 | 5.79 ± 0.45 | 5.64 ± 1.18 | 3.78–6.40 |
VFA | g/L | 1.08 ± 0.16 | 1.03 ± 0.08 | 1.21 ± 0.07 | 1.49 ± 0.18 | 0.98 ± 0.10 | 1.32 ± 0.13 | 0.93 ± 0.14 | 0.95 ± 0.28 | 0.75 ± 0.15 | 0.72 ± 0.19 | 0.83 ± 0.11 | 0.72–1.49 |
Soluble COD (sCOD) | g/L | 40.6 ± 5.6 | 37.0 ± 2.9 | 38.7 ± 4.3 | 32.3 ± 14.7 | 31.1 ± 0.7 | 45.4 ± 1.6 | 51.0 ± 4.7 | 51.8 ± 4.7 | 14.9 ± 3.4 | 35.7 ± 21.8 | 31.9 ± 5.4 | 14.9–51.8 |
NH4+-N | mg NH4+-N/L | 14.2 ± 3.9 | 34.1 ± 4.8 | 50.5 ± 1.3 | 26.7 ± 6.2 | 25.1 ± 7.1 | 13.0 ± 1.0 | 27.4 | 32.2 ± 12.0 | 26.6 ± 6.9 | 79.5 ± 23.8 | 107 ± 10 | 13–107 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheah, Y.-K.; Dosta, J.; Mata-Álvarez, J. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Molecules 2019, 24, 2986. https://doi.org/10.3390/molecules24162986
Cheah Y-K, Dosta J, Mata-Álvarez J. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Molecules. 2019; 24(16):2986. https://doi.org/10.3390/molecules24162986
Chicago/Turabian StyleCheah, Yen-Keong, Joan Dosta, and Joan Mata-Álvarez. 2019. "Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition" Molecules 24, no. 16: 2986. https://doi.org/10.3390/molecules24162986
APA StyleCheah, Y. -K., Dosta, J., & Mata-Álvarez, J. (2019). Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Molecules, 24(16), 2986. https://doi.org/10.3390/molecules24162986