The Effect of Substitution Pattern on Binding Ability in Regioisomeric Ion Pair Receptors Based on an Aminobenzoic Platform
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. General Procedure A—For Preparation of Compounds 1a–3a
- Compound 1a. According to general procedure A and using 2-nitrobenzoylchloride (0.36 g, 2.72 mmol), TEA (0.38 mL, 2.72 mmol), and 1-aza-18-crown-6 (0.72 g, 2.69 mmol) in DCM (20 mL), the title compound was prepared as a colorless oil (1.02 g, 92%). 1H NMR (300 MHz, CDCl3) δ 8.13–8.22 (m, 1H), 7.63–7.72 (m, 1H), 7.48–7.58 (m, 1H), 7.38–7.46 (m, 1H), 3.83 (s, 4H), 3.38–3.72 (m, 20H).13C NMR (75 MHz, CDCl3) δ 168.2, 145.1, 134.3, 133.4, 129.6, 128.6, 124.7, 77.5, 77.1, 76.6, 70.9, 70.7 70.6, 70.5, 70.4, 70.3, 69.3, 68.8, 49.6, 45.6.HRMS (ESI): Calculated for C19H28N2O8Na [M + Na]+: 435.1743, found: 435.1751.
- Compound 2a. According to general procedure A and using 3-nitrobenzoylchloride (1.00 g, 5.39 mmol), TEA (0.90 mL, 6.45 mmol), and 1-aza-18-crown-6 (1.42 g, 5.40 mmol) in DCM (50 mL), the title compound was prepared as a colorless oil (2.15 g, 97%). 1H NMR (300 MHz, DMSO–d6) δ 8.20–8.35 (m, 2H), 7.80–7.89 (m, 1H), 7.71–7.77 (m, 1H), 3.40–3.80 (m, 24H). 13C NMR (75 MHz, DMSO–d6) δ169.2, 148.0, 138.9, 133.8, 130.6, 124.3, 122.2, 70.6, 70.4, 70.2, 68.7, 50.1, 45.7. HRMS (ESI): Calculated for C19H28N2O8Na [M + Na]+: 435.1743, found: 435.1747.
- Compound 3a. According to general procedure A and using 4-nitrobenzoylchloride (1.00 g, 5.40 mmol), TEA (0.90 mL, 6.40 mmol), and 1-aza-18-crown-6 (1.42 g, 5.40 mmol) in DCM (50 mL), the title compound was prepared as a colorless oil (2.10 g, 95%). 1H NMR (300 MHz, CDCl3) δ 8.22–8.35 (m, 2H),7.29–7.37(m, 2H),3.66–3.81 (m, 24H). 13C NMR (75 MHz, CDCl3) δ 156.3, 155.3, 144.7, 125.0, 122.3, 70.8, 70.7, 70.6,70.5, 70.4, 70.2, 69.5, 69.4 48.8, 48.5.HRMS (ESI): Calculated for C19H28N2O8Na [M + Na]+: 435.1743, found: 435.1750.
3.3. General Procedure B—For Preparation of Compounds 1b–3b
- Compound 1b: HRMS (ESI): Calculated for C19H30N2O6Na [M + Na]+: 405.2002, found: 405.2011.
- Compound 2b: HRMS (ESI): Calculated for C19H30N2O6Na [M + Na]+: 405.2002, found: 405.2008.
- Compound 3b: HRMS (ESI): Calculated for C19H30N2O6Na [M + Na]+: 405.2002, found: 405.2006.
3.4. General Procedure C—For Preparation of Receptors 1–3
- Receptor 1. According to general procedure C and using amine 1b (0.34 g, 0.89 mmol), 2-nitrophenylisocyanate (0.15 g, 0.89 mmol), and TEA (0.12 mL, 1.10 mmol) in THF (20 mL), the title compound was prepared as a yellow oil (0.37 g, 75%). 1H NMR (300 MHz, DMSO–d6) δ 10.06 (s, 1H), 8.25–8.17 (m, 3H), 7.86–7.80 (m, 1H), 7.71–7.64 (m, 2H), 7.45–7.33 (m, 1H), 7.32–7.25 (m,1H), 7.20–7.10 (m, 1H), 3.70 (s, 4H), 3.32–3.59 (m, 20H). 13C NMR (75 MHz, CDCl3) δ 171.4, 152.4, 145.8, 142.0, 134.9, 130.2, 128.1, 126.6, 125.0, 123.9, 123.6, 117.6, 70.5, 70.0, 69.0, 68.5, 50.2, 45.4. HRMS (ESI): Calculated for C26H34N4O9Na [M + Na]+: 569.2224, found: 569.2229.
- Receptor 2. The compound was prepared using modified procedure described previously [18]. According to general procedure C and using amine 2b (0.40 g, 1.05 mmol), 3-nitrophenylisocyanate (0.18 g, 1.10 mmol), and TEA (0.15 mL, 1.10 mmol) in THF (30 mL), the title compound was prepared as a yellow oil (0.40 g, 70%). 1H NMR (300 MHz, CDCl3) δ 8.83 (s, 1H), 8.21 (s, 1H), 8.15–8.08 (m, 2H), 7.58–7.50 (m, 2H), 7.40–7.29 (m, 2H), 7.26–7.18 (m, 1H), 7.03–6.96 (m, 1H), 3.70–3.60 (m, 24H). 13C NMR (75 MHz, CDCl3) δ 173.2, 152.1, 145.8, 142.0, 139.2, 136.5, 129.4, 125.1, 120.6, 120.5 117.6, 117.1, 70.7, 70.6, 70.5, 70.3. 69.2 HRMS (ESI): calcd for C26H34N4O9Na [M + Na]+: 569.2224, found: 569.2229. HRMS (ESI): Calculated for C26H34N4O9Na [M + Na]+: 569.2224, found: 569.2202.
- Receptor 3. According to general procedure C and using amine 3b (0.56 g, 1.45 mmol), 4-nitrophenylisocyanate (0.24 g, 1.40 mmol), and TEA (0.15 mL, 1.10 mmol) in THF (30 mL), the title compound was prepared as a yellow oil (0.55 g, 69%). 1H NMR (300 MHz, CDCl3) δ 8.98 (s, 1H), 8.37 (s, 1H), 8.25–8.15 (m, 2H), 7.70–7.61 (m, 2H), 7.26–7.20 (m, 2H), 7.14–7.07 (m, 2H), 3.86–3.62 (m, 24H). 13CNMR (75 MHz,CDCl3) δ 173.5, 152.2, 145.7, 142.1, 140.4, 127.5, 125.1, 119.4, 117.7, 70.9, 70.7, 70.6, 70.4, 69.1.HRMS (ESI): Calculated for C26H34N4O9Na [M + Na]+: 569.2224, found: 569.2210.
3.5. UV-Vis Titration Procedure
3.6. 1H NMR Titration Procedure
3.7. Crystallographic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- McConnell, A.J.; Beer, P.D. Heteroditopic receptors for ion-pair recognition. Angewandte Chem. Int. Ed. 2012, 51, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Sessler, J.L. Ion pair receptors. Chem. Soc. Rev. 2010, 39, 3784–3809. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Vargas-Zúñiga, G.I.; Kim, S.H.; Kim, S.K.; Sessler, J.L. Macrocycles as Ion Pair Receptors. Chem. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Sengupta, A.; Liu, Y.; McDonald, K.P.; Pink, M.; Anderson, J.R.; Raghavachari, K.; Flood, A.H. Quantitative and coupled experiment-theory study with aryl-triazole-ether macrocycles. J. Am. Chem. Soc. 2015, 137, 9746–9757. [Google Scholar]
- Mäkelä, T.; Kalenius, E.; Rissanen, K. Cooperatively enhanced ion pair binding with a hybrid receptor. Inorg. Chem. 2015, 54, 9154–9165. [Google Scholar] [CrossRef] [PubMed]
- Piątek, P.; Karbarz, M.; Romański, J. Boosting the salt recognition abilities of L-ornithine based multitopic molecular receptors by harnessing a double cooperative effect. Dalton Trans. 2014, 43, 8515–8522. [Google Scholar] [CrossRef] [PubMed]
- Załubiniak, D.; Zakrzewski, M.; Piątek, P. Highly effective ion-pair receptors based on 2,2-bis(aminomethyl)-propionic acid. Dalton Trans. 2016, 45, 15557. [Google Scholar] [CrossRef] [PubMed]
- Hamon, M.; Ménand, M.; Le Gac, S.; Luhmer, M.; Dalla, V.; Jabin, I. Calix[6]tris(thio)ureas: Heteroditopic receptors for the cooperative binding of organic ion pairs. J. Org. Chem. 2008, 73, 7067–7071. [Google Scholar] [CrossRef] [PubMed]
- Zoran, K.; Chmielewski, M. A Photoswitchable Heteroditopic Ion-Pair Receptor. J. Am. Chem. Soc. 2018, 140, 16010–16014. [Google Scholar]
- Shukla, R.; Kida, T.; Smith, B.D. Effect of Competing Alkali Metal Cations on Neutral Host’s Anion Binding Ability. Org. Lett. 2000, 2, 3099–3102. [Google Scholar] [CrossRef]
- Frontera, A.; Orell, M.; Garau, C.; Quinonero, D.; Molins, E.; Mata, I.; Morey, J. Preparation, solid-state characterization, and computational study of a crown ether attached to a squaramide. Org. Lett. 2005, 7, 1437–1440. [Google Scholar] [CrossRef] [PubMed]
- Scheerder, J.; van Duynhoven, J.P.M.; Engbersen, J.F.J.; Reinhoudt, D.N. Solubilization of NaX salts in chloroform by bifunctional receptors. Angewandte Chem. Int. Ed. Engl. 1996, 35, 1090–1093. [Google Scholar] [CrossRef]
- Webber, P.R.A.; Beer, P.D. Ion-pair recognition by a ditopic calix[4]semitube receptor. Dalton Trans. 2003, 2249–2252. [Google Scholar] [CrossRef]
- Mahoney, J.M.; Beatty, A.M.; Smith, B.D. Selective solid liquid extraction of lithium halide salts using a ditopic macrobicyclic receptor. Inorg. Chem. 2004, 43, 7617–7621. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.M.; Nawaratna, G.U.; Beatty, A.M.; Duggan, P.J.; Smith, B.D. Transport of alkali halides through a liquid organic membrane containing a ditopic salt–binding receptor. Inorg. Chem. 2004, 43, 5902–5907. [Google Scholar] [CrossRef] [PubMed]
- Akhuli, B.; Ghosh, P. Selective recognition and extraction of KBr via cooperative interactions with a urea functionalized crown ether dual-host. Chem. Commun. 2015, 51, 16514–16517. [Google Scholar] [CrossRef]
- He, Q.; Williams, N.J.; Oh, J.H.; Lynch, V.M.; Kim, S.K.; Moyer, B.A.; Sessler, J.L. Selective Solid-Liquid and Liquid-Liquid Extraction of Lithium Chloride Using Strapped Calix[4]pyrroles. Angew. Chem. Int. Ed. 2018, 57, 11924–11928. [Google Scholar] [CrossRef]
- Koulov, A.V.; Mahoney, J.M.; Smith, B.D. Facilitated transport of sodium or potassium chloride across vesicle membranes using a ditopic salt-binding macrobicycle. Org. Biomol. Chem. 2003, 1, 27–29. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.H.; Choi, Y.R.; Kang, P.; Choi, M.G.; Jeong, K.S. Synthetic K+/Cl−-Selective Symporter across a Phospholipid Membrane. J. Org. Chem. 2014, 79, 6403–6409. [Google Scholar] [CrossRef]
- Busschaert, N.; Park, S.-H.; Baek, K.-H.; Choi, Y.P.; Park, J.; Howe, E.N.W.; Hiscock, J.R.; Karagiannidis, L.E.; Marques, I.; Félix, V.; et al. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat. Chem. 2017, 9, 667–675. [Google Scholar] [CrossRef]
- Zakrzewski, M.; Kwietniewska, N.; Walczak, W.; Piątek, P. A non-multimacrocyclic heteroditopic receptor that cooperatively binds and effectively extracts KAcO salt. Chem. Commun. 2018, 54, 7018–7021. [Google Scholar] [CrossRef] [PubMed]
- Jagleniec, D.; Siennicka, S.; Dobrzycki, Ł.; Karbarz, M.; Romański, J. Recognition and extraction of sodium chloride by a squaramide-based ion pair receptor. Inorg. Chem. 2018, 57, 12941–12952. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-W.; Yoo, J.; Kim, B.; Adhikari, S.; Kum, S.K.; Yeon, Y.; Haynes, C.J.E.; Sutton, J.L.; Tong, C.C.; Lynch, V.M.; et al. Oligoether-strapped calix[4]pyrrole: An ion-pair receptor displaying cation-dependent chloride chloride anion transport. Chem. Eur. J. 2012, 18, 2514–2523. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.K.; Homberg, A.; Vishe, M.; Besnard, C.; Lacour, J. Efficient synthesis of ditopic polyamide receptors for cooperative ion pair recognition in solution and solid states. Chem. Eur. J. 2018, 24, 2944–2951. [Google Scholar] [CrossRef] [PubMed]
- Romański, J.; Piątek, P. Selective ammonium nitrate recognition by a heteroditopic macrocyclic ion-pair receptor. J. Org. Chem. 2013, 78, 4341–4347. [Google Scholar] [CrossRef]
- Ambrosi, G.; Formica, M.; Fusi, V.; Giorgi, L.; Guerri, A.; Micheloni, M.; Paoli, P.; Pontellini, R.; Rossi, P. A new macrocyclic cryptand with suqaramide moieties: An overstructured CuII complex that selectivity binds halides: Synthesis, acid/based-and ligational behavior, and crystal structures. Chem. Eur. J. 2007, 17, 1670–1682. [Google Scholar] [CrossRef] [PubMed]
- Łęczycka-Wilk, K.; Dąbrowa, K.; Cmoch, P.; Jarosz, S. Chloride-templated macrocyclization and anion-binding properties of C2-symmetric macrocyclic ureas from sucrose. Org. Lett. 2017, 19, 4596–4599. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowa, K.; Ulatowski, F.; Lichosyt, D.; Jurczak, J. Catching the chloride: Searching for non-Hofmeister selectivity behavior in systematically varied polyamide macrocyclic receptors. Org. Biomol. Chem. 2017, 15, 5927–5943. [Google Scholar] [CrossRef]
- Romański, J.; Piątek, P. Tuning the binding properties of a new heteroditopic salt receptor through embedding in a polymer system. Chem. Commun. 2012, 48, 11346–11348. [Google Scholar] [CrossRef]
- Ziach, K.; Karbarz, M.; Romański, J. Cooperative binding and extraction of sodium nitrite by a ditopic receptor incorporated into a polymeric resin. Dalton Trans. 2016, 45, 11639–11643. [Google Scholar] [CrossRef]
- Gale, P.A.; Caltagirone, C. Anion sensing by small molecules and molecular ensembles. Chem. Soc. Rev. 2015, 44, 4212–4227. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Peters, G.M.; Brockman, C.; Lynch, V.M.; Sessler, J.L. Controlling Structure Beyond the Initial Coordination Sphere: Complexation-Induced Reversed Micelle Formation in Calix[4]-pyrrole-Containing Diblock Copolymers. J. Am. Chem. Soc. 2018, 140, 13219–13222. [Google Scholar] [CrossRef] [PubMed]
- Elmes, E.B.P.; Jolliffe, K.A. Amino acid-based squaramides for anion recognition. Supramol. Chem. 2015, 27, 321–328. [Google Scholar] [CrossRef]
- Piątek, P.; Zdanowski, S.; Romański, J. Cooperative ion pair recognition by multitopic L-ornithine based salt receptors. New J. Chem. 2015, 39, 2090. [Google Scholar] [CrossRef]
- Kubik, S. Amino acid containing anion receptors. Chem. Soc. Rev. 2009, 38, 585–605. [Google Scholar] [CrossRef] [PubMed]
- Zdanowski, S.; Romański, J. Ion pair binding by an L-tyrosine-based polymerizable molecular receptor. New. J. Chem. 2015, 39, 6216–6222. [Google Scholar] [CrossRef]
- Ziach, K.; Jurczak, J.; Romański, J. Sodium thiocyanate binding by a 3-aminobenzoic acid based ion pair receptor consisting of a thiourea binding domain. Inorg. Chem. Commun. 2017, 84, 251–254. [Google Scholar] [CrossRef]
- Ziach, K.; Jurczak, J. Chiral Crystals from Dynamic Combinatorial Libraries of Achiral Macrocyclic Imines. Cryst. Growth Des. 2015, 15, 4372–4376. [Google Scholar] [CrossRef]
- Karbarz, M.; Romański, J. Dual sensing by simple heteroditopic salt receptors containing an antraquinone unit. Inorg. Chem. 2016, 55, 3616–3623. [Google Scholar] [CrossRef]
- Supramolecular. Available online: http://supramolecular.org (accessed on 14 February 2019).
- APEX2; Bruker AXS Inc.: Madison, WI, USA, 2013.
- SAINT; Bruker AXS Inc.: Madison, WI, USA, 2013.
- SADABS; Bruker AXS Inc.: Madison,WI, USA, 2012.
- Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr. 1990, A46, 467–473. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.J.C. International Tables for Crystallography; Kluwer: Dordrecht, The Netherlands, 1992; Volume C. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Anion | 1 | 1 + Na+ | KNa/KTBA |
Cl− | 2.18 | 2.62 | 2.74 |
Br− | 2.27 | 2.60 | 2.16 |
NO2− | 2.37 | 2.52 | 1.44 |
PhCO2− | 4.38 | 4.44 | 1.14 |
MeCO2− | 4.39 | 4.52 | 1.34 |
2 | 2 + Na+ | KNa/KTBA | |
Cl− | 4.05 | 4.21 | 1.45 |
Br− | 3.21 | 3.38 | 1.49 |
NO2− | 3.92 | 4.08 | 1.44 |
PhCO2− | 4.82 | 4.76 | 0.87 |
MeCO2− | 5.77 | 5.74 | 0.92 |
3 | 3 + Na+ | KNa/KTBA | |
Cl− | 4.07 | 4.11 | 1.10 |
Br− | 3.29 | 3.38 | 1.25 |
NO2− | 3.92 | 3.98 | 1.15 |
PhCO2− | 5.26 | 5.20 | 0.88 |
MeCO2− | 5.89 | 5.79 | 0.79 |
Guest | 1 | 2 | 3 |
---|---|---|---|
TBABr | 2.04 | 3.36 | 3.41 |
NaBr [b] | 3.02 | 3.88 | 3.84 |
KNa/KTBA | 9.54 | 3.26 | 2.67 |
1 | 2 | 3 | |
---|---|---|---|
logKNa+ | 3.85 | 4.08 | 4.06 |
CUV-Vis [mM] | 0.035 | 0.029 | 0.035 |
XUV-Vis [a] [%] | 17 | 21.9 | 23.3 |
CNMR [mM] | 2.92 | 2.73 | 2.66 |
XNMR [a] [%] | 80.2 | 84 | 83.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagleniec, D.; Ziach, K.; Dąbrowa, K.; Romański, J. The Effect of Substitution Pattern on Binding Ability in Regioisomeric Ion Pair Receptors Based on an Aminobenzoic Platform. Molecules 2019, 24, 2990. https://doi.org/10.3390/molecules24162990
Jagleniec D, Ziach K, Dąbrowa K, Romański J. The Effect of Substitution Pattern on Binding Ability in Regioisomeric Ion Pair Receptors Based on an Aminobenzoic Platform. Molecules. 2019; 24(16):2990. https://doi.org/10.3390/molecules24162990
Chicago/Turabian StyleJagleniec, Damian, Krzysztof Ziach, Kajetan Dąbrowa, and Jan Romański. 2019. "The Effect of Substitution Pattern on Binding Ability in Regioisomeric Ion Pair Receptors Based on an Aminobenzoic Platform" Molecules 24, no. 16: 2990. https://doi.org/10.3390/molecules24162990
APA StyleJagleniec, D., Ziach, K., Dąbrowa, K., & Romański, J. (2019). The Effect of Substitution Pattern on Binding Ability in Regioisomeric Ion Pair Receptors Based on an Aminobenzoic Platform. Molecules, 24(16), 2990. https://doi.org/10.3390/molecules24162990