Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Anatase/Rutile TiO2 Composite Nanoparticles
3.2. CharacterizationMethods
3.3. Photocatalytic Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, X.; Li, Y.; Deng, D.; Chen, N.; Xing, X.; Wang, Y. A one-step nonaqueous sol–gel route to mixed-phase TiO2 with enhanced photocatalytic degradation of Rhodamine B under visible light. CrystEngComm 2016, 18, 1964–1975. [Google Scholar] [CrossRef]
- Konstantinou, I.K.; Albanis, T.A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review. Appl. Catal. B Environ. 2004, 49, 1–14. [Google Scholar] [CrossRef]
- Fu, W.; Li, G.; Wang, Y.; Zeng, S.; Yan, Z.; Wang, J.; Xin, S.; Zhang, L.; Wu, S.; Zhang, Z. Facile formation of mesoporous structured mixed-phase (anatase/rutile) TiO2 with enhanced visible light photocatalytic activity. Chem. Commun. 2018, 54, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Chen, Z.; Louhi-Kultanen, M. Effect of a pulsed electric field on the synthesis of TiO2 and its photocatalytic performance under visible light irradiation. Powder Technol. 2017, 307, 137–144. [Google Scholar] [CrossRef]
- Tang, R.; Yin, L. Enhanced photovoltaic performance of dye-sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures. J. Mater. Chem. A 2015, 3, 17417–17425. [Google Scholar] [CrossRef]
- Hua, J.Y.; Zhang, S.S.; Cao, Y.H.; Wang, H.J.; Yua, H.; Peng, F. A novel highly active anatase/rutile TiO2 photocatalyst with hydrogenated heterophase interface structures for photoelectrochemical water splitting into hydrogen. ACS Sustain. Chem. Eng. 2018, 6, 10823–10832. [Google Scholar] [CrossRef]
- Tiwari, A.; Mondal, I.; Ghosh, S.; Chattopadhyay, N.; Pal, U. Fabrication of mixed phase TiO2 heterojunction nanorods and its enhanced photoactivities. Phys. Chem. Chem. Phys. 2016, 18, 15260–15268. [Google Scholar] [CrossRef]
- Luo, Z.; Poyraz, A.S.; Kuo, C.-H.; Miao, R.; Meng, Y.T.; Chen, S.-Y.; Jiang, T.; Wenos, C.; Suib, S.L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 2015, 67, 6–27. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Nishimoto, S.; Jin, M.; Tryk, D.A.; Murakami, T.; Fujishima, A. Anatase TiO2 Nanoparticles on Rutile TiO2 Nanorods: A Heterogeneous Nanostructure via Layer-by-Layer Assembly. Langmuir 2007, 23, 10916–10919. [Google Scholar] [CrossRef]
- Kawahara, T.; Ozawa, T.; Iwasaki, M.; Tada, H.; Ito, S. Photocatalytic activity of rutile–anatase coupled TiO2 particles prepared by a dissolution–reprecipitation method. J. Colloid Interface Sci. 2003, 267, 377–381. [Google Scholar] [CrossRef]
- Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal. A Gen. 2003, 244, 383–391. [Google Scholar] [CrossRef]
- Testino, A.; Bellobono, I.R.; Buscaglia, V.; Canevali, C.; D’Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. Optimizing the Photocatalytic Properties of Hydrothermal TiO2 by the Control of Phase Composition and Particle Morphology. A Systematic Approach. J. Am. Chem. Soc. 2007, 129, 3564–3575. [Google Scholar] [CrossRef]
- Cao, Y.; He, T.; Chen, Y.; Cao, Y. Fabrication of Rutile TiO2−Sn/Anatase TiO2−N Heterostructure and Its Application in Visible-Light Photocatalysis. J. Phys. Chem. C 2010, 114, 3627–3633. [Google Scholar] [CrossRef]
- Hong, T.; Mao, J.; Tao, F.; Lan, M. Recyclable Magnetic Titania Nanocomposite from Ilmenite with Enhanced Photocatalytic Activity. Molecules 2017, 22, 2044. [Google Scholar] [CrossRef]
- Peng, F.; Gao, H.; Zhang, G.; Zhu, Z.; Zhang, J.; Liu, Q. Synergistic Effects of Sm and C Co-Doped Mixed Phase Crystalline TiO2 for Visible Light Photocatalytic Activity. Materials 2017, 10, 209. [Google Scholar] [CrossRef]
- Atitar, M.F.; Ismail, A.A.; Dillert, R.; Bahnemann, D.W. Photodegradation of Herbicide Imazapyr and Phenol over Mesoporous Bicrystalline Phases TiO2: A Kinetic Study. Catalysts 2019, 9, 640. [Google Scholar] [CrossRef]
- Wen, P.; Itoh, H.; Tang, W.; Feng, Q. Single Nanocrystals of Anatase-Type TiO2 Prepared from Layered Titanate Nanosheets: Formation Mechanism and Characterization of Surface Properties. Langmuir 2007, 23, 11782–11790. [Google Scholar] [CrossRef]
- Yang, H.G.; Sun, C.H.; Qiao, S.Z.; Zou, J.; Liu, G.; Smith, S.C.; Cheng, H.M.; Lu, G. (Max) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, C.-Y.; Chiu, H.-T. Enhanced Photocatalysis from Truncated Octahedral Bipyramids of Anatase TiO2 with Exposed {001}/{101} Facets. ACS Omega 2018, 3, 10225–10232. [Google Scholar] [CrossRef]
- Sutiono, H.; Tripathi, A.M.; Chen, C.-H.; Su, W.-N.; Chen, L.-Y.; Hwang, B.-J.; Chen, H.-M.; Dai, H. Facile Synthesis of [101]-Oriented Rutile TiO2 Nanorod Array on FTO Substrate with a Tunable Anatase–Rutile Heterojunction for Efficient Solar Water Splitting. ACS Sustain. Chem. Eng. 2016, 4, 5963–5971. [Google Scholar] [CrossRef]
- Majumder, D.; Roy, S. Non-fluorinated synthesis of anatase TiO2 with dominant {001} facets: Influence of faceted structures on formaldehyde sensitivity. New J. Chem. 2017, 41, 7591–7597. [Google Scholar] [CrossRef]
- He, K.; Wen, Q.K.; Wang, C.W.; Wang, B.X. Synthesis of anatase TiO2 with exposure of (100) facets and its enhanced electrorheological activity. Soft Matter 2017, 13, 7879–7889. [Google Scholar] [CrossRef]
- Du, Y.-E.; Niu, X.; Bai, Y.; Qi, H.; Guo, Y.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Synthesis of Anatase TiO2 Nanocrystals with Defined Morphologies from Exfoliated Nanoribbons: Photocatalytic Performance and Application in Dye-sensitized Solar Cell. ChemistrySelect 2019, 4, 4443–4457. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Y.-E.; Bai, Y.; An, J.; Li, J.; Yang, X.; Feng, Q. Facile Synthesis of {101}, {010} and [111]-Faceted Anatase-TiO2 Nanocrystals Derived from Porous Metatitanic Acid H2 TiO3 for Enhanced Photocatalytic Performance. ChemistrySelect 2018, 3, 2867–2876. [Google Scholar] [CrossRef]
- Liu, L.; Du, Y.-E.; Niu, X.; Li, W.; Li, J.; Yang, X.; Feng, Q. Synthesis, Transformation Mechanism and Photocatalytic Properties of Various Morphologies Anatase TiO2 Nanocrystals Derived from Tetratitanate Nanobelts. ChemistrySelect 2018, 3, 9953–9959. [Google Scholar] [CrossRef]
- Chen, C.; Ikeuchi, Y.; Xu, L.; Sewvandi, G.A.; Kusunose, T.; Tanaka, Y.; Nakanishi, S.; Wen, P.; Feng, Q. Synthesis of [111]- and {010}-faceted anatase TiO2 nanocrystals from tri-titanate nanosheets and their photocatalytic and DSSC performances. Nanoscale 2015, 7, 7980–7991. [Google Scholar] [CrossRef]
- Du, Y.-E.; Bai, Y.; Liu, Y.; Guo, Y.; Cai, X.; Feng, Q.; Du, Y. One-Pot Synthesis of [111]-/{010} Facets Coexisting Anatase Nanocrystals with Enhanced Dye-Sensitized Solar Cell Performance. ChemistrySelect 2016, 1, 6632–6640. [Google Scholar] [CrossRef]
- Wu, T.X.; Liu, G.M.; Zhao, J.C. Photoassisted degradation of dye pollutants. v. self-photosensitized oxidative transformation of Rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 1998, 102, 5845–5851. [Google Scholar] [CrossRef]
- Liu, B.; Khare, A.; Aydil, E.S. TiO2–B/Anatase Core–Shell Heterojunction Nanowires for Photocatalysis. ACS Appl. Mater. Interfaces 2011, 3, 4444–4450. [Google Scholar] [CrossRef]
- Zhang, T.; Oyama, T.; Aoshima, A.; Hidaka, H.; Zhao, J.; Serpone, N. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A Chem. 2001, 140, 163–172. [Google Scholar] [CrossRef]
- Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 1995, 95, 49–68. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, H.; Wang, J.; Liu, D.; Du, G.; Cui, J. Ag2O/TiO2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity. ACS Appl. Mater. Interfaces 2010, 2, 2385–2392. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2. Angew. Chem. Int. Ed. 2008, 47, 1766–1769. [Google Scholar] [CrossRef]
- Zhang, D.R.; Liu, H.L.; Han, S.Y.; Piao, W.X. Synthesis of Sc and V-doped TiO2 nanoparticles and photodegradation of rhodamine-B. J. Ind. Eng. Chem. 2013, 19, 1838–1844. [Google Scholar] [CrossRef]
- Du, Y.-E.; Feng, Q.; Chen, C.; Tanaka, Y.; Yang, X. Photocatalytic and Dye-Sensitized Solar Cell Performances of {010}-Faceted and [111]-Faceted Anatase TiO2 Nanocrystals Synthesized from Tetratitanate Nanoribbons. ACS Appl. Mater. Interfaces 2014, 6, 16007–16019. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, X.; Liu, J.; Nie, X.; Huang, Y.; Wen, Y.; Khan, J.; Khan, W.U.; Wu, M.; An, T. Topotactic Growth, Selective Adsorption, and Adsorption-Driven Photocatalysis of Protonated Layered Titanate Nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 17730–17739. [Google Scholar] [CrossRef]
- Kiatkittipong, K.; Scott, J.; Amal, R. Hydrothermally Synthesized Titanate Nanostructures: Impact of Heat Treatment on Particle Characteristics and Photocatalytic Properties. ACS Appl. Mater. Interfaces 2011, 3, 3988–3996. [Google Scholar] [CrossRef]
- Du, Y.-E.; Niu, X.; Liu, Y.; Li, J.; Guo, F.; Feng, Q. Synthesis of {110}-faceted rutile TiO2 nanocrystals from tetratitanate nanoribbons for improving dye-sensitized solar cell performance. RSC Adv. 2016, 6, 9717–9724. [Google Scholar] [CrossRef]
- Pal, S.K.; Catalano, M.; Taurino, A.; Laera, A.M.; Licciulli, A.A. Biphase TiO2 Microspheres with Enhanced Photocatalytic Activity. Ind. Eng. Chem. Res. 2014, 53, 7931–7938. [Google Scholar] [CrossRef]
- Tobaidi, D.M.; Pullar, R.C.; Durães, L.; Matias, T.; Seabra, M.P.; Labrincha, A. Truncated tetragonal bipyamidal anatase nanocrystals formed without use of capping agents from the supercritical drying of a TiO2 sol. CrystEngComm 2016, 18, 164–176. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 2002, 26, 1167–1170. [Google Scholar] [CrossRef]
- Chen, C.; Sewvandi, G.A.; Kusunose, T.; Tanaka, Y.; Nakanishi, S.; Feng, Q. Synthesis of {010}-faceted anatase TiO2 nanoparticles from layered titanate for dye-sensitized solar cells. CrystEngComm 2014, 16, 8885. [Google Scholar] [CrossRef]
- Reunchan, P.; Ouyang, S.; Xu, H.; Tong, H.; Umezawa, N.; Kako, T.; Ye, J. Anatase TiO2 Single Crystals Exposed with High-Reactive {111} Facets Toward Efficient H2 Evolution. Chem. Mater. 2013, 25, 405–411. [Google Scholar]
- Zhao, Z.-Y. Single Water Molecule Adsorption and Decomposition on the Low-Index Stoichiometric Rutile TiO2 Surfaces. J. Phys. Chem. C 2014, 118, 4287–4295. [Google Scholar] [CrossRef]
- Gomez, T.; Zarate, X.; Schott, E.; Arratia-Perez, R. Role of the main adsorption modes in the interaction of the dye [COOH-TPP-Zn(II)] on a periodic TiO2 slab exposing a rutile (110) surface in a dye-sensitized solar cell. RSC Adv. 2014, 4, 9639–9646. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds (pH0.5-TiO2 and pH1.0-TiO2) are available from the authors. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Du, Y.-e.; Bai, Y.; An, J.; Cai, X.; Chen, Y.; Wang, P.; Yang, X.; Feng, Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules 2019, 24, 2996. https://doi.org/10.3390/molecules24162996
He J, Du Y-e, Bai Y, An J, Cai X, Chen Y, Wang P, Yang X, Feng Q. Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules. 2019; 24(16):2996. https://doi.org/10.3390/molecules24162996
Chicago/Turabian StyleHe, Jing, Yi-en Du, Yang Bai, Jing An, Xuemei Cai, Yongqiang Chen, Pengfei Wang, Xiaojing Yang, and Qi Feng. 2019. "Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity" Molecules 24, no. 16: 2996. https://doi.org/10.3390/molecules24162996
APA StyleHe, J., Du, Y. -e., Bai, Y., An, J., Cai, X., Chen, Y., Wang, P., Yang, X., & Feng, Q. (2019). Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity. Molecules, 24(16), 2996. https://doi.org/10.3390/molecules24162996