Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Flavonoids and Phenolic Acids Contents
2.2. Analysis of Anthocyanin Contents
2.3. Analysis of Carotenoid Contents
2.4. Analysis of Volatile Compounds
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material
3.3. HPLC-DAD-ESIMS and GC-MS Analytical Conditions
3.4. Extraction and LC-DAD Analysis of Flavonoids and Phenolic Acids
3.5. Extraction and LC-DAD Analysis of Anthocyanins
3.6. Extraction and LC-DAD Analysis of Carotenoids
3.7. GC-MS Analysis of Volatile Compounds
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, P.L.; Wan, Q.; Guo, Y.P.; Yang, J.; Rao, G.Y. Phylogeny of the genus Chrysanthemum L.: Evidence from single-copy nuclear gene and chloroplast dna sequences. PLoS ONE 2012, 7, e48970. [Google Scholar] [CrossRef] [PubMed]
- Teixeira da Silva, J.A.; Kulus, D. Chrysanthemum biotechnology: Discoveries from the recent literature. Folia Hortic. 2005, 26, 20–22. [Google Scholar] [CrossRef]
- Wang, X.-G.; Wang, H.-B.; Chen, F.-D.; Jiang, J.-F.; Fang, W.-M.; Liao, Y.; Teng, N.-J. Factors affecting quantity of pollen dispersal of spray cut chrysanthemum (Chrysanthemum morifolium). BMC Plant Biol. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Bensky, D.; Clavey, S.; Stoger, E. Chinese Herbal Medicine: Materia Medica, 3rd ed.; Eastland Press: Seattle, WA, USA, 2004; pp. 58–61. [Google Scholar]
- Matsuda, H.; Morikawa, T.; Toguchida, I.; Harima, S.; Yoshikawa, M. Medicinal flowers.VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycoside from the flowers of Chrysanthemum indicum L.: Their inhibitory activities for rat lens aldose reductase. Chem. Pharm. Bull. 2002, 50, 972–975. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xi, M.; Guo, Q.; Wang, L.; Shen, Z. Chemical components and antioxidant activity of volatile oil of a Compositae tea (Coreopsis tinctoria Nutt.) from Mt. Kunlun. Ind. Crop. Prod. 2015, 67, 318–323. [Google Scholar] [CrossRef]
- Han, A.R.; Nam, B.; Kim, B.R.; Lee, K.-C.; Song, B.-S.; Kim, S.H.; Kim, J.-B.; Jin, C.H. Phytochemical composition and antioxidant activities of two different color Chrysanthemum flower teas. Molecules 2019, 24, 329. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yan, J.; Zhao, J.; Zhu, Y. Headspace solid-phase microextraction and gas chromatography-mass spectrometry of volatile components of Chrysanthemum morifolium Ramat. Trop. J. Pharm. Res. 2016, 15, 2241–2244. [Google Scholar] [CrossRef]
- Flamini, G.; Cioni, P.L.; Morelli, I. Differences in the fragrances of pollen, leaves, and floral parts of garland (Chrysanthemum coronarium) and composition of the essential oils from flower heads and leaves. J. Agric. Food Chem. 2003, 51, 2267–2271. [Google Scholar] [CrossRef]
- Park, C.H.; Chae, S.C.; Park, S.Y.; Kim, J.K.; Kim, Y.J.; Chung, S.O.; Arasu, M.V.; Al-Dhabi, N.A.; Park, S.U. Anthocyanin and carotenoid contents in different cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules 2015, 20, 11090–11102. [Google Scholar] [CrossRef]
- Kishimoto, S.; Maoka, T.; Nakayama, M.; Ohmiya, A. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochemistry 2004, 65, 2781–2786. [Google Scholar] [CrossRef]
- Han, A.R.; Kim, H.Y.; So, Y.; Nam, B.; Lee, I.-S.; Nam, J.-W.; Jo, Y.D.; Kim, S.H.; Kim, J.-B.; Kang, S.-Y.; et al. Quantification of antioxidant phenolic compounds in a new chrysanthemum cultivar by high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Int. J. Anal. Chem. 2017, 2017, 1254721. [Google Scholar] [CrossRef]
- Lin, L.Z.; Harnly, J.M. Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem. 2010, 120, 319–326. [Google Scholar] [CrossRef]
- Yang, F.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Neuroprotective caffeoylquinic acid derivatives from the flowers of Chrysanthemum morifolium. J. Nat. Prod. 2017, 80, 1028–1033. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, Y.S. Identification of new dicaffeoylquinic acids from Chrysanthemum morifolium and their antioxidant activities. Planta Med. 2005, 71, 871–876. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Qu, J.L.; Wang, Q.L.; Yoshikawa, M.; Yuan, D. Comparative evaluation of cultivars of Chrysanthemum morifolium flowers by HPLC-DAD-ESI/MS analysis and antiallergic assay. J. Agric. Food Chem. 2012, 60, 12574–12583. [Google Scholar] [CrossRef]
- Alvarez-Castellanos, P.P.; Bishop, C.D.; Pascual-Villalobos, M.J. Antifungal activity of the essential oil of flower heads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry 2001, 57, 99–102. [Google Scholar] [CrossRef]
- Tawaha, K.; Hudaib, M. Volatile oil profiles of the aerial parts of Jordanian garland, Chrysanth Coronarium. Pharm. Biol. 2010, 48, 1108–1114. [Google Scholar] [CrossRef]
- Chen, L. Research and analysis of the international market of chrysanthemum. Greenh. Hortic. 2005, 8, 20–22. [Google Scholar]
- Spencer-Lopes, M.M.; Forster, B.P.; Jankuloski, L. Manual on Mutation Food and Agriculture Organization of the United Nations; FAO/IAEA: Rome, Italy, 2018; p. 301. [Google Scholar]
- Ohmiya, A.; Toyoda, T.; Watanabe, H.; Emoto, K.; Hase, Y.; Yoshioka, S. Mechanism behind petal color mutation induced by heavy-ion-beam irradiation of recalcitrant chrysanthemum cultivar. J. Japan. Soc. Hortic. Sci. 2012, 81, pp. 269–274. [Google Scholar] [CrossRef]
- Korea Seed & Variey Service. Available online: www.seed.go.kr/english/fuction/system_06.jsp (accessed on 18 August 2019).
- Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 2002, 5, 218–223. [Google Scholar] [CrossRef]
- Konczak, I.; Okuno, S.; Yoshimoto, M.; Yamakawa, O. Caffeoylquinic acids generated in vitro in a high-anthocyanin accumulating sweet potato cell line. J. Biomed. Biotechnol. 2004, 2004, 287–292. [Google Scholar] [CrossRef]
- Haslam, E. Practical Polyphenolics: From Structure to Molecular Recognition and Physiological Action; Cambridge University Press: Cambridge, UK, 1998; pp. 154–196. [Google Scholar]
- Jo, Y.D.; Kim, Y.S.; Ryu, J.; Coi, H.I.; Kim, S.W.; Kang, H.S.; Ahn, J.W.; Kim, J.B.; Kang, S.Y.; Kim, S.H. Deletion of carotenoid cleavage dioxygenase 4a (CmCCD4a) and global up-regulation of plastid protein-coding genes in a mutant chrysanthemum cultivar producing yellow petals. Sci. Hortic. 2016, 212, 49–59. [Google Scholar] [CrossRef]
- Kishimoto, S.; Ohmiya, A. Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiol. Plant. 2006, 128, 436–447. [Google Scholar] [CrossRef]
- Yoshioka, S.; Aida, R.; Yamamizo, C.; Shibata, M.; Ohmiya, A. The carotenoid cleavage dioxygenase 4 (CmCCD4a) gene family encodes a key regulator of petal color mutation in chrysanthemum. Euphytica 2012, 184, 377–387. [Google Scholar] [CrossRef]
- Yang, L.; Nuerbiye, A.; Cheng, P.; Wang, J.-H.; Li, H. Analysis of floral volatile components and antioxidant activity of different varieties of Chrysanthemum morifolium. Molecules 2017, 22, 1790. [Google Scholar] [CrossRef]
- Geppetti, P.; Benemei, S.; Patacchini, R. Camphor, an old cough remedy with a new mechanism. Am. J. Respir. Crit. Care Med. 2012, 185, 342. [Google Scholar] [CrossRef]
- Tucker, J.M.; Townsend, D.M. Alpha-tocopherol: Roles in prevention and therapy of human disease. Biomed. Pharmacother. 2005, 59, 380–387. [Google Scholar] [CrossRef]
- Kelly, G.S. Squalene and its potential clinical uses. Altern. Med. Rev. A J. Clin. Ther. 1999, 4, 29–36. [Google Scholar]
- Fan, S.; Chang, J.; Zong, Y.; Hu, G.; Jia, J. GC-MS analysis of the composition of the essential oil from Dendranthema indicum var. aromaticum using three extraction methods and two columns. Molecules 2018, 23, 576. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Group | Cultivar | Flavonoids and Phenolic Acids (mg/g, dry weight) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chlorogenic Acid | Luteolin-7-O-β-Glucoside | 3,5-Dicaffeoyl Quinic Acid | Apigenin-7-O-β-Glucoside | Linarin | Acacetin-7-O-β-Glucoside | Luteolin | Apigenin | Total | ||
I | Noble Wine | 0.631 ± 0.025g 1 | 0.875 ± 0.017d | 1.198 ± 0.017j | 0.218 ± 0.010c | 0.135 ± 0.002 b | 0.141 ± 0.019 b | 0.280 ± 0.006i | 0.074 ± 0.010f | 3.553 ± 0.105hi |
ARTI-Purple Lady | 0.396 ± 0.005j | 0.856 ± 0.037d | 0.987 ± 0.162k | 0.828 ± 0.090 a | 0.092 ± 0.002c | 0.117 ± 0.014 b | 0.467 ± 0.008h | 0.081 ± 0.014f | 3.824 ± 0.331h | |
ARTI-Yellow Star | 0.588 ± 0.007h | 0.484 ± 0.018e | 1.480 ± 0.036i | 0.066 ± 0.007e | 0.134 ± 0.001 b | 0.075 ± 0.008c | 0.364 ± 0.032i | 0.058 ± 0.002f | 3.250 ± 0.111i | |
II | Pinky | 0.976 ± 0.017 b | 1.381 ± 0.037 a | 4.149 ± 0.066c | 0.107 ± 0.022de | ND 2d | 0.063 ± 0.004c | 1.959 ± 0.131c | 0.421 ± 0.030d | 9.057 ± 0.307 b |
ARTI-Red Star | 0.771 ± 0.018f | 0.886 ± 0.011d | 2.981 ± 0.008g | 0.056 ± 0.011e | ND d | 0.024 ± 0.004d | 2.181 ± 0.119 b | 0.430 ± 0.037d | 7.329 ± 0.208d | |
ARTI-Rising Sun | 0.641 ± 0.007g | 0.413 ± 0.007e | 2.645 ± 0.033h | 0.108 ± 0.011de | ND d | 0.007 ± 0.001d | 1.356 ± 0.020e | 1.010 ± 0.009c | 6.179 ± 0.088f | |
III | Argus | 0.993 ± 0.010 b | 0.115 ± 0.012f | 3.397 ± 0.178e | ND f | ND d | ND d | 0.738 ± 0.060g | 0.343 ± 0.002e | 5.588 ± 0.263g |
ARTI-Purple | 1.066 ± 0.009 a | 0.148 ± 0.015f | 3.682 ± 0.066d | 0.064 ± 0.014e | ND d | ND d | 2.771 ± 0.013 a | 3.149 ± 0.014 a | 10.880 ± 0.131 a | |
ARTI-Queen | 0.934 ± 0.007c | 0.133 ± 0.016f | 4.609 ± 0.094 b | ND f | ND d | 0.007 ± 0.001d | 0.706 ± 0.084g | 0.433 ± 0.002d | 6.822 ± 0.204e | |
IV | Plaisir d’amour | 0.797 ± 0.001e | 1.030 ± 0.043c | 5.855 ± 0.128 a | 0.518 ± 0.039 b | ND d | ND d | 1.134 ± 0.024f | 1.001 ± 0.041c | 10.336 ± 0.276 a |
ARTI-Rollypop | 0.851 ± 0.015d | 0.949 ± 0.079cd | 3.463 ± 0.061e | 0.126 ± 0.019d | ND d | ND d | 1.149 ± 0.010f | 1.052 ± 0.027 b | 7.589 ± 0.210d |
Group | Cultivar | Anthocyanins (mg/g, dry weight) | |||
---|---|---|---|---|---|
Cyanidin-3-O-Glucoside | Cyanidin-3-O-(6”-Malonyl Glucoside) | Cyanidin | Total | ||
I | Noble Wine | 0.136 ± 0.002c 1 | 0.754 ± 0.022c | 0.348 ± 0.007c | 1.239 ± 0.031c |
ARTI-Dark Chocolate | 0.545 ± 0.031 a | 4.547 ± 0.292 a | 1.482 ± 0.095 a | 6.574 ± 0.418 a | |
ARTI-Purple Lady | 0.234 ± 0.001 b | 1.558 ± 0.004 b | 0.644 ± 0.002 b | 2.436 ± 0.008 b | |
ARTI-Yellow Star | 0.074 ± 0.001ef | 0.161 ± 0.007g | 0.200 ± 0.002fg | 0.434 ± 0.010hi | |
II | Pinky | 0.078 ± 0.001ef | 0.192 ± 0.007fg | 0.236 ± 0.004ef | 0.507 ± 0.012g |
ARTI-Red Star | 0.100 ± 0.000d | 0.349 ± 0.001de | 0.285 ± 0.001de | 0.734 ± 0.003ef | |
ARTI-Rising Sun | 0.067 ± 0.000ef | 0.118 ± 0.001g | 0.199 ± 0.001fg | 0.385 ± 0.002ij | |
III | Argus | 0.065 ± 0.000f | 0.096 ± 0.000g | 0.177 ± 0.000g | 0.339 ± 0.000j |
ARTI-Purple | 0.100 ± 0.000d | 0.329 ± 0.002ef | 0.270 ± 0.001de | 0.698 ± 0.004f | |
ARTI-Queen | 0.082 ± 0.001e | 0.189 ± 0.008fg | 0.204 ± 0.002fg | 0.475 ± 0.012g | |
IV | Plaisir d’amour | 0.100 ± 0.002d | 0.377 ± 0.013de | 0.301 ± 0.004d | 0.778 ± 0.018e |
ARTI-Rollypop | 0.113 ± 0.000d | 0.496 ± 0.006d | 0.281 ± 0.001de | 0.890 ± 0.007d |
Group I | ||||
No. | Noble Wine | ARTI-Dark Chocolate | ARTI-Purple Lady | ARTI-Yellow Star |
1 | trans-3(10)-Caren-2-ol (18.01%) | 7-Hexyleicosane (20.23%) | trans-3(10)-Caren-2-ol (22.77%) | 2-Methylnonadecane (15.65%) |
2 | 2-Methylnonadecane (13.50%) | 2-Methylnonadecane (17.79%) | 7-Hexyleicosane (10.92%) | 7-Hexyleicosane (15.42%) |
3 | 7-Hexyleicosane (12.50%) | 9-Octylheptadecane (6.66%) | 2-Methylnonadecane (10.37%) | 2-Methyleicosane (14.61%) |
4 | 2-Methyleicosane (12.40%) | 2-Methyleicosane (6.53%) | 2-Methyleicosane (7.24%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (13.22%) |
5 | Camphor (9.40%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (6.36%) | Camphor (7.17%) | Camphor (9.78%) |
6 | 9-Octylheptadecane (4.65%) | 3-(1,5-Dimethyl-4-hexenyl)-6-methylenecyclohexene (2.90%) | 9-Octylheptadecane (4.50%) | 9-Octylheptadecane (5.83%) |
7 | 7,11-Dimethyl-3-methylene-1,6,10-dodecatriene (1.99%) | 1-Methyl-5-methylene-8-(1-methylethyl)-1,6-cyclodecadiene (2.43%) | 2-Methyltetracosane (3.17%) | dl-α-Tocopherol (2.57%) |
8 | 1-Methyl-5-methylene-8-(1-methylethyl)-1,6-cyclodecadiene (1.96%) | 2,2,4-Trimethyl-3-(3,8,12,16-tetramethyl-heptadeca-3,7,11,15-tetraenyl)-cyclohexanol (2.32%) | Squalene (2.64%) | 1-Methyl-5-methylene-8-(1-methylethyl)-1,6-cyclodecadiene (2.51%) |
9 | 2-Methyltetracosane (1.77%) | 2-Methyltetracosane (2.16%) | 1-Methyl-5-methylene-8-(1-methylethyl)-1,6-cyclodecadiene (2.48%) | 7,11-Dimethyl-3-methylene-1,6,10-dodecatriene (2.37%) |
10 | dl-α-Tocopherol (1.65%) | Camphor (1.75%) | 7,11-Dimethyl-3-methylene-1,6,10-dodecatriene (1.91%) | Squalene (1.77%) |
Group II | ||||
No. | Pinky | ARTI-Red Star | ARTI-Rising Sun | |
1 | 2-Methylnonadecane (17.15%) | 7-Hexyleicosane (14.21%) | 2-Methyl-nonadecane (16.52%) | |
2 | 7-Hexyleicosane (16.86%) | 2-Methylnonadecane (13.73%) | 7-Hexyleicosane (14.40%) | |
3 | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (12.94%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (10.20%) | 2-Methyl-eicosane (10.40%) | |
4 | 2-Methyltetracosane (6.91%) | Squalene (5.60%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (8.24%) | |
5 | 9-Octylheptadecane (4.91%) | 1-Iodo-2-methylundecane (5.14%) | 3,4,5,6-Tetramethyloctane (6.72%) | |
6 | 2-Methyleicosane (4.32%) | 2-Methyleicosane (4.30%) | 9-Octylheptadecane (4.36%) | |
7 | 9-Octadecenamide (4.26%) | 9-Octylheptadecane (3.83%) | 2-Methyltetracosane (3.61%) | |
8 | 3-(1,5-Dimethyl-4-hexenyl)-6-methylenecyclohexene (1.93%) | 3-(1,5-Dimethyl-4-hexenyl)-6-methylenecyclohexene (3.06%) | 2,2,4-Trimethyl-3-(3,8,12,16-tetramethyl-heptadeca-3,7,11,15-tetraenyl)-cyclohexanol (2.71%) | |
9 | Heptacosane (1.58%) | 1-Ethenyl-1-methyl-2,4-bis(1-methylethenyl)cyclohexane (2.78%) | dl-α-Tocopherol (1.71%) | |
10 | 6-Methyltridecane (1.48%) | 1-Phenyl-1-nonyne (2.03%) | Heptacosane (1.67%) | |
Group III | ||||
No. | Argus | ARTI-Purple | ARTI-Queen | |
1 | 7-Hexyleicosane (15.10%) | 2-Methyleicosane (15.43%), | Squalene oxide (15.38%) | |
2 | 2-Methyleicosane (14.69%) | 2-Methylnonadecane (14.87%) | 7-Hexyleicosane (12.49%) | |
3 | 2-Methylnonadecane (14.37%) | 7-Hexyleicosane (14.10%) | 2-Methylnonadecane (11.53%) | |
4 | 9-Octylheptadecane (8.66%) | Squalene oxide (12.29%) | 2-Methyleicosane (10.26%) | |
5 | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (7.05%) | 9-Octylheptadecane (8.28%) | 9-Octylheptadecane (7.76%) | |
6 | Squalene oxide (6.31%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (7.20%) | 9-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-ol (4.23%) | |
7 | 2-Methyltetracosane (2.59%) | 9-(3,3-Dimethyloxiran-2-yl)-2,7-dimethylnona-2,6-dien-1-ol (4.31%) | Squalene (3.82%) | |
8 | Z-12-Pentacosene (1.72%) | 1-Octadecanesulphonyl chloride (2.32%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-Cyclopropanemethanol (3.77%), | |
9 | Squalene (1.61%) | Squalene (2.15%) | 1-Octadecanesulphonyl chloride (2.03%) | |
10 | 11-decyltetracosane (1.56%) | Heptacosane (1.74%) | cis-2-Methyl-7-octadecene (1.68%) | |
Group IV | ||||
No. | Plaisir d’amour | ARTI-Rollypop | ||
1 | 2-Methyl-eicosane (20.00%), | 2-Methyl-eicosane (15.22%), | ||
2 | 2-Methyl-nonadecane (15.72%) | 2-Methyl-nonadecane (13.07%) | ||
3 | 7-Hexyleicosane (13.03%) | 7-Hexyleicosane (13.07%) | ||
4 | 9-Octylheptadecane (4.22%) | 9-Octylheptadecane (5.96%) | ||
5 | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (2.74%) | 2-Methyltetracosane (5.05%) | ||
6 | Bornyl acetate (2.55%) | Bornyl acetate (4.07%) | ||
7 | Heptacosane (2.06%) | Squalene (3.83%) | ||
8 | dl-α-Tocopherol (2.00%) | α-2-Dimethyl-2-(4-methyl-3-pentenyl)-cyclopropanemethanol (3.32%), | ||
9 | 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol (1.78%) | 3-(1,5-Dimethyl-4-hexenyl)-6-methylenecyclohexene (2.23%) | ||
10 | 3-(1,5-Dimethyl-4-hexenyl)-6-methylenecyclohexene (1.65%) | 1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol (2.10%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.; Nam, B.; Kim, B.-R.; Kim, S.H.; Jo, Y.D.; Ahn, J.-W.; Kim, J.-B.; Jin, C.H.; Han, A.-R. Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium. Molecules 2019, 24, 3003. https://doi.org/10.3390/molecules24163003
Ryu J, Nam B, Kim B-R, Kim SH, Jo YD, Ahn J-W, Kim J-B, Jin CH, Han A-R. Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium. Molecules. 2019; 24(16):3003. https://doi.org/10.3390/molecules24163003
Chicago/Turabian StyleRyu, Jaihyunk, Bomi Nam, Bo-Ram Kim, Sang Hoon Kim, Yeong Deuk Jo, Joon-Woo Ahn, Jin-Baek Kim, Chang Hyun Jin, and Ah-Reum Han. 2019. "Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium" Molecules 24, no. 16: 3003. https://doi.org/10.3390/molecules24163003
APA StyleRyu, J., Nam, B., Kim, B. -R., Kim, S. H., Jo, Y. D., Ahn, J. -W., Kim, J. -B., Jin, C. H., & Han, A. -R. (2019). Comparative Analysis of Phytochemical Composition of Gamma-Irradiated Mutant Cultivars of Chrysanthemum morifolium. Molecules, 24(16), 3003. https://doi.org/10.3390/molecules24163003