Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Polar Steroids from P. pectinifera on Cancer Cell Viability
2.2. The Effect of Polar Steroids from P. pectinifera on Colony Formation in Human Colorectal Carcinoma Cells Alone and in Combination with X-Ray Exposure
2.3. Effect of Polar Steroids from P. pectinifera and X-Ray Radiation on Induction of Apoptosis in Human Colorectal Carcinoma Cells
3. Materials and Methods
3.1. Reagents
3.2. Polar Steroids from P. pectinifera
3.3. Cell Lines and Culture
3.4. MTS Assay
3.5. Soft Agar Colony Formation Assay
3.6. X-ray Exposure
3.7. Cells Irradiation Assay
3.8. Western Blotting Assay
3.9. DNA Comet Assay
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthias, F.; Debusa, H.; Debusa, J. Radiotherapy for colorectal cancer: Current standards and future perspectives. Visc. Med. 2016, 32, 172–177. [Google Scholar] [CrossRef]
- Mishra, J.; Dromund, J.; Quazi, S.H.; Karanki, S.S.; Shaw, J.J.; Chen, B.; Kumar, N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit. Rev. Oncol. Hematol. 2013, 86, 232–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, G.; Xu, T.H.; Yang, B.; Lin, X.P.; Zhou, X.F.; Yang, X.W.; Liu, Y.H. Chemical constituents and bioactivities of starfish. Chem. Biodivers. 2011, 8, 740–791. [Google Scholar] [CrossRef] [PubMed]
- Kicha, A.A.; Kalinovsky, A.I.; Levina, E.V.; Stonik, V.A.; Elyakov, G.B. Polyhydroxylated steroids from digestive organs of the starfish Patiria pectinifera. Bioorgan. Khimiya 1983, 9, 975–977. [Google Scholar]
- Kicha, A.A.; Kalinovsky, A.I.; Levina, E.V.; Stonik, V.A. Asterosaponin P1 from the Far-East starfish Patiria pectinifera. Khimiya Prir. Soedin. 1981, 5, 669–670. [Google Scholar]
- Kicha, A.A.; Kalinovsky, A.I.; Levina, E.V.; Stonik, V.A.; Elyakov, G.B. Asterosaponin P1 from the starfish Patiria pectinifera. Tetrahedron Lett. 1983, 24, 3893–3896. [Google Scholar] [CrossRef]
- Noguchi, Y.; Higuchi, R.; Marubayashi, N.; Komori, T. Structures of two new sapogenins and two new oligoglycoside sulfates: Pectinioside A and pectinioside B. Liebigs Ann. Chem. 1987, 1987, 341–348. [Google Scholar] [CrossRef]
- Dubois, M.A.; Noguchi, R.; Higuchi, R.; Komori, T. Structures of two new oligoglycoside sulfates, pectiniosides C and D. Liebigs Ann. Chem. 1988, 5, 495–500. [Google Scholar] [CrossRef]
- Dubois, M.A.; Higuchi, R.; Komori, T.; Sasaki, T. Structures of two new oligoglycoside sulfates, pectiniosides E and F, and biological activities of the six new pectiniosides. Liebigs Ann. Chem. 1988, 9, 845–850. [Google Scholar] [CrossRef]
- Higuchi, R.; Natori, T.; Komori, T. Biologically active glycosides from asteroidea, XX. Glycosphingolipids from the starfish Asterina pectinifera, 1. Isolation and characterization of acanthacerebroside B and structure elucidation of related, nearly homogeneous cerebrosides. Liebigs Ann. Chem. 1990, 1, 51–55. [Google Scholar] [CrossRef]
- Higuchi, R.; Inoue, S.; Inagaki, K.; Sakai, M.; Miyamoto, T.; Komori, T.; Inagaki, M.; Isobe, R. Biologically active glycosides from Asteroidea, 42. Isolation and structure of a new biologically active ganglioside molecular species from the starfish Asterina pectinifera. Chem. Pharm. Bull. 2006, 54, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Palyanova, N.V.; Pankova, T.M.; Starostina, M.V.; Kicha, A.A.; Ivanchina, N.V.; Stonik, V.A. Neuritogenic and neuroprotective effects of polar steroids from the Far East starfishes Patiria pectinifera and Distolasterias nipon. Mar. Drugs 2013, 11, 1440–1455. [Google Scholar] [CrossRef] [PubMed]
- Palyanova, N.V.; Pankova, T.M.; Starostina, M.V.; Kicha, A.A.; Ivanchina, N.V.; Stonik, V.A. Neurotrophic effects of polyhydroxylated steroids and steroid glycosides in cultured neuroblastoma cells. Bull. Exp. Biol. Med. 2006, 141, 584–587. [Google Scholar] [CrossRef]
- Pesentseva, M.S.; Sova, V.V.; Silchenko, A.S.; Kicha, A.A.; Silchenko, A.S.; Haertle, T.; Zvyagintseva, T.N. A new arylsulfatase from the marine mollusk Turbo chrysostomus. Chem. Nat. Compd. 2012, 48, 853–859. [Google Scholar] [CrossRef]
- Peng, Y.; Zheng, J.; Huang, R.; Wang, Y.; Xu, T.; Zhou, X.; Liu, Q.; Zeng, F.; Ju, H.; Yang, X.; et al. Polyhydroxy steroids and saponins from China sea starfish, Asterina pectinifera and their biological activities. Chem. Pharm. Bull. 2010, 58, 856–858. [Google Scholar] [CrossRef]
- Vien, L.T.; Ngoan, B.T.; Hanh, T.T.; Vinh, L.B.; Thung, D.C.; Thao, D.T.; Thanh, N.V.; Cuong, N.X.; Nam, N.H.; Kiem, P.V.; et al. Steroid glycosides from the starfish Pentaceraster gracilis. J. Asian Nat. Prod. Res. 2017, 19, 474–480. [Google Scholar] [CrossRef]
- Lu, Y.; Li, H.; Wang, M.; Liu, Y.; Feng, Y.; Liu, K.; Tang, H. Cytotoxic polyhydroxysteroidal glycosides from starfish Culcita novaeguineae. Mar. Drugs 2018, 16, 92. [Google Scholar] [CrossRef]
- Tang, H.F.; Cheng, G.; Wu, J.; Chen, X.L.; Zhang, S.Y.; Wen, A.D.; Lin, H.W. Cytotoxic asterosaponins capable of promoting polymerization of tubulin from the starfish Culcita novaeguineae. J. Nat. Prod. 2009, 72, 284–289. [Google Scholar] [CrossRef]
- Blumenthal, R.D.; Goldenberg, D.M. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol. Biotechnol. 2007, 35, 185–197. [Google Scholar] [CrossRef]
- Ha, D.T.; Kicha, A.A.; Kalinovsky, A.I.; Malyarenko, T.V.; Popov, R.S.; Malyarenko, O.S.; Ermakova, S.P.; Thuy, T.T.T.; Long, P.Q.; Ivanchina, N.V. Asterosaponins from the tropical starfish Acanthaster planci and their cytotoxic and anticancer activities in vitro. Nat. Prod. Res. 2019, 19, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, F.; Jia, K.; Kong, L. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol. 2018, 9, 1253–1278. [Google Scholar] [CrossRef]
- Nambiar, D.; Rajamani, P.; Singh, R.P. Effects of phytochemicals on ionization radiation-mediated carcinogenesis and cancer therapy. Mutat. Res. 2011, 728, 139–157. [Google Scholar] [CrossRef]
- Yue, Q.; Gao, G.; Zou, G.; Yu, H.; Zheng, X. Natural products as adjunctive treatment for pancreatic cancer: Recent trends and advancements. Biomed. Res. Int. 2017, 2017, 8412508. [Google Scholar] [CrossRef]
- Kim, B.M.; Hong, Y.; Lee, S.; Liu, P.; Lim, J.H.; Lee, Y.H.; Lee, T.H.; Chang, K.T.; Hong, Y. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci. 2015, 11, 26880–26913. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.W.; Kuo, M.T. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017, 8, 62742–62758. [Google Scholar] [CrossRef] [PubMed]
- Belka, C.; Jendrossek, V.; Pruschy, M.; Vink, S.; Verheij, M.; Budach, W. Apoptosis-modulating agents in combination with radiotherapy-current status and outlook. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther. 2005, 4, 139–163. [Google Scholar] [CrossRef]
- Green, D.R.; Fitzgerald, P. Just so stories about the evolution of apoptosis. Curr. Biol. 2016, 26, R620–R627. [Google Scholar] [CrossRef]
- Tait, S.W.; Green, D.R. Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat. Rev. Mol. Cell Biol. 2010, 11, 621–632. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, G.; Tang, H.F.; Zhang, X. Novaeguinoside II inhibits cell proliferation and induces apoptosis of human brain glioblastoma U87MG cells through the mitochondrial pathway. Brain Res. 2011, 1372, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, O.S.; Dyshlovoy, S.A.; Kicha, A.A.; Ivanchina, N.V.; Malyarenko, T.V.; Carsten, B.; von Gunhild, A.; Stonik, V.A.; Ermakova, S.P. The inhibitory activity of luzonicosides from the starfish Echinaster luzonicus against human melanoma cells. Mar. Drugs 2017, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhu, C.; Li, X.; Zhang, Z.; Yuan, Y.; Ni, Y.; Liu, T.; Deng, S.; Zhao, J.; Wang, Y. Asterosaponin 1 induces endoplasmic reticulum stress-associated apoptosis in A549 human lung cancer cells. Oncol. Rep. 2011, 26, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, T.V.; Malyarenko, O.S.; Kicha, A.A.; Ivanchina, N.V.; Kalinovsky, A.I.; Dmitrenok, P.S.; Ermakova, S.P.; Stonik, V.A. In Vitro anticancer and proapoptotic activities of steroidal glycosides from the starfish Anthenea aspera. Mar. Drugs 2018, 16, 420. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef]
- Nandhakumar, S.; Parasuraman, S.; Shanmugam, M.M.; Ramachandra, K.; Chand, R.P.; Bhat, B.V. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J. Pharmacol. Pharmacother. 2011, 2, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Kicha, A.A.; Ivanchina, N.V.; Gorshkova, I.A.; Ponomarenko, L.P.; Likhatskaya, G.N.; Stonik, V.A. The distribution of free sterols, polyhydroxysteroids and steroid glycosides in various body components of the starfish Patiria (=Asterina) pectinifera. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 128, 43–52. [Google Scholar] [CrossRef]
- Malyarenko, O.S.; Zdobnova, E.V.; Silchenko, A.S.; Kusaykin, M.I.; Ermakova, S.P. Radiosensitizing effect of the fucoidan from brown alga Fucus evanescens and its derivative in human cancer cells. Carbohydr. Polym. 2019, 205, 465–471. [Google Scholar] [CrossRef]
- Olive, P.L.; Banath, J.P.; Durand, R.E. Heterogeneity in radiation induced DNA damage and repair in tumor and normal cells using the “Comet” assay. Radiat. Res. 1990, 122, 86–94. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malyarenko, O.S.; Malyarenko, T.V.; Kicha, A.A.; Ivanchina, N.V.; Ermakova, S.P. Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells. Molecules 2019, 24, 3154. https://doi.org/10.3390/molecules24173154
Malyarenko OS, Malyarenko TV, Kicha AA, Ivanchina NV, Ermakova SP. Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells. Molecules. 2019; 24(17):3154. https://doi.org/10.3390/molecules24173154
Chicago/Turabian StyleMalyarenko, Olesya S., Timofey V. Malyarenko, Alla A. Kicha, Natalia V. Ivanchina, and Svetlana P. Ermakova. 2019. "Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells" Molecules 24, no. 17: 3154. https://doi.org/10.3390/molecules24173154
APA StyleMalyarenko, O. S., Malyarenko, T. V., Kicha, A. A., Ivanchina, N. V., & Ermakova, S. P. (2019). Effects of Polar Steroids from the Starfish Patiria (=Asterina) pectinifera in Combination with X-Ray Radiation on Colony Formation and Apoptosis Induction of Human Colorectal Carcinoma Cells. Molecules, 24(17), 3154. https://doi.org/10.3390/molecules24173154