Finding High-Quality Metal Ion-Centric Regions Across the Worldwide Protein Data Bank
Abstract
:1. Introduction
2. Methods
- (1)
- Electron density resolution less than or equal to 2.5 Å;
- (2)
- Atom occupancy greater than or equal to 0.9;
- (3)
- No symmetry atoms within 3.5 Å;
- (4)
- The sum of discrepant electrons within a 3.5 Å region surrounding the metal ion point position is less than the data-derived cutoff.
3. Results
3.1. X-Ray Crystallographic Resolution
3.2. Occupancy and Symmetry-Related Atoms
3.3. Discrepancy between Calculated and Observed Electron Density Maps
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andreini, C.; Bertini, I.; Rosato, A. Metalloproteomes: a bioinformatic approach. Acc Chem. Res. 2009, 42, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Putignano, V.; Rosato, A.; Banci, L.; Andreini, C. MetalPDB in 2018: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 2018, 46, D459–D464. [Google Scholar] [CrossRef] [PubMed]
- Ruta, L.L.; Nicolau, I.; Popa, C.V.; Farcasanu, I.C. Manganese Suppresses the Haploinsufficiency of Heterozygous trpy1Delta/TRPY1 Saccharomyces cerevisiae Cells and Stimulates the TRPY1-Dependent Release of Vacuolar Ca(2+) under H(2)O(2) Stress. Cells 2019, 8, 79. [Google Scholar] [CrossRef] [PubMed]
- Sibarov, D.A.; Antonov, S.M. Calcium-Dependent Desensitization of NMDA Receptors. Biochemistry (Mosc) 2018, 83, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Sievers, Q.L.; Petzold, G.; Bunker, R.D.; Renneville, A.; Slabicki, M.; Liddicoat, B.J.; Abdulrahman, W.; Mikkelsen, T.; Ebert, B.L.; Thoma, N.H. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 2018, 362. [Google Scholar] [CrossRef] [PubMed]
- Bhim, A.; Laha, S.; Gopalakrishnan, J.; Natarajan, S. Color Tuning in Garnet Oxides: The Role of Tetrahedral Coordination Geometry for 3 d Metal Ions and Ligand-Metal Charge Transfer (Band-Gap Manipulation). Chem. Asian J. 2017, 12, 2734–2743. [Google Scholar] [CrossRef] [PubMed]
- Donahue, C.M.; McCollom, S.P.; Forrest, C.M.; Blake, A.V.; Bellott, B.J.; Keith, J.M.; Daly, S.R. Correction to Impact of Coordination Geometry, Bite Angle, and Trans Influence on Metal-Ligand Covalency in Phenyl-Substituted Phosphine Complexes of Ni and Pd. Inorg. Chem. 2015, 54, 8857. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Flight, R.M.; Rouchka, E.C.; Moseley, H.N. Aberrant coordination geometries discovered in the most abundant metalloproteins. Proteins 2017, 85, 885–907. [Google Scholar] [CrossRef]
- Gil-Moreno, S.; Jimenez-Marti, E.; Palacios, O.; Zerbe, O.; Dallinger, R.; Capdevila, M.; Atrian, S. Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein? Int. J. Mol. Sci. 2015, 17, 6. [Google Scholar] [CrossRef]
- M’Kandawire, E.; Mierek-Adamska, A.; Sturzenbaum, S.R.; Choongo, K.; Yabe, J.; Mwase, M.; Saasa, N.; Blindauer, C.A. Metallothionein from Wild Populations of the African Catfish Clarias gariepinus: From Sequence, Protein Expression and Metal Binding Properties to Transcriptional Biomarker of Metal Pollution. Int. J. Mol. Sci. 2017, 18, 1548. [Google Scholar] [CrossRef]
- Warren, G.L.; Do, T.D.; Kelley, B.P.; Nicholls, A.; Warren, S.D. Essential considerations for using protein-ligand structures in drug discovery. Drug Discov. Today 2012, 17, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.; Henrick, K.; Nakamura, H.; Markley, J.L. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 2007, 35, D301–D303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Cooper, D.R.; Porebski, P.J.; Shabalin, I.G.; Handing, K.B.; Minor, W. CheckMyMetal: A macromolecular metal-binding validation tool. Acta Crystallogr. D Struct. Biol. 2017, 73, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, C.R.; Garrett, A.E.; Carstensen, T.; Pollastri, G.; Nielsen, J.E. Structural artifacts in protein-ligand X-ray structures: implications for the development of docking scoring functions. J. Med. Chem. 2009, 52, 5673–5684. [Google Scholar] [CrossRef] [PubMed]
- Echols, N.; Morshed, N.; Afonine, P.V.; McCoy, A.J.; Miller, M.D.; Read, R.J.; Richardson, J.S.; Terwilliger, T.C.; Adams, P.D. Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Smart, O.S.; Horsky, V.; Gore, S.; Svobodova Varekova, R.; Bendova, V.; Kleywegt, G.J.; Velankar, S. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr. D Struct. Bio.l 2018, 74, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleywegt, G.J.; Harris, M.R.; Zou, J.Y.; Taylor, T.C.; Wahlby, A.; Jones, T.A. The Uppsala Electron-Density Server. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2240–2249. [Google Scholar] [CrossRef] [Green Version]
- Gutmanas, A.; Alhroub, Y.; Battle, G.M.; Berrisford, J.M.; Bochet, E.; Conroy, M.J.; Dana, J.M.; Fernandez Montecelo, M.A.; van Ginkel, G.; Gore, S.P.; et al. PDBe: Protein Data Bank in Europe. Nucleic Acids Res. 2014, 42, D285–D291. [Google Scholar] [CrossRef]
- Yao, S.; Moseley, H.N.B. A chemical interpretation of protein electron density maps in the worldwide protein data bank. bioRxiv 2019. [Google Scholar] [CrossRef]
- Banci, L. Molecular dynamics simulations of metalloproteins. Curr. Opin. Chem. Biol. 2003, 7, 143–149. [Google Scholar] [CrossRef]
- Ryde, U. Combined quantum and molecular mechanics calculations on metalloproteins. Curr. Opin. Chem. Biol. 2003, 7, 136–142. [Google Scholar] [CrossRef]
- Pengfei Li, K.M.M.J. Metal ion modeling using classical mechanics. Chem. Rev. 2017, 117, 1564–1686. [Google Scholar]
- Santos-Martins, D.; Forli, S.; Ramos, M.J.; Olson, A.J. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins. J. Chem. Inf. Model. 2014, 54, 2371–2379. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth Yuriev, M.A.; Paul, A. Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit. 2011, 24, 149. [Google Scholar] [CrossRef] [PubMed]
- Sehnal, D.; Deshpande, M.; Varekova, R.S.; Mir, S.; Berka, K.; Midlik, A.; Pravda, L.; Velankar, S.; Koca, J. LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nat. Methods 2017, 14, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Nierhaus, K.H. Mg2+, K+, and the Ribosome. J. Bacteriol. 2014, 196, 3817–3819. [Google Scholar] [CrossRef] [PubMed]
- Cotelesage, J.J.; Pushie, M.J.; Grochulski, P.; Pickering, I.J.; George, G.N. Metalloprotein active site structure determination: synergy between X-ray absorption spectroscopy and X-ray crystallography. J. Inorg. Biochem. 2012, 115, 127–137. [Google Scholar] [CrossRef]
- Buhrke, T.; Loscher, S.; Lenz, O.; Schlodder, E.; Zebger, I.; Andersen, L.K.; Hildebrandt, P.; Meyer-Klaucke, W.; Dau, H.; Friedrich, B.; et al. Reduction of unusual iron-sulfur clusters in the H2-sensing regulatory Ni-Fe hydrogenase from Ralstonia eutropha H16. J. Biol. Chem. 2005, 280, 19488–19495. [Google Scholar] [CrossRef]
- Yao, S.; Flight, R.M.; Rouchka, E.C.; Moseley, H.N. A less-biased analysis of metalloproteins reveals novel zinc coordination geometries. Proteins 2015, 83, 1470–1487. [Google Scholar] [CrossRef]
- Tang, Y.T.; Marshall, G.R. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. J. Chem. Inf. Model. 2011, 51, 214–228. [Google Scholar] [CrossRef]
- Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des. 2002, 16, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Flight, R.M.; Rouchka, E.C.; Moseley, H.N. Perspectives and expectations in structural bioinformatics of metalloproteins. Proteins Struct. Funct. Bioinform. 2017, 85, 938–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Metal | Number of PDB Entries | Number of Total Metal Ion Sites | Number with <2.5 Å Resolution | Number with High Occupancy | Number with No Nearby Symmetry Atoms | Number with No Significant Discrepancy Densities | Number That Passes All Criterion |
---|---|---|---|---|---|---|---|
Zn | 13,497 | 67,405 | 56,176(83%) | 62,550(93%) | 62,967(93%) | 23,883(35%) | 13,230(20%) |
Mg | 13,225 | 85,080 | 30,537(36%) | 81,528(96%) | 81,463(96%) | 48,708(57%) | 18,305(22%) |
Ca | 10,138 | 44,538 | 36,193(81%) | 41,929(94%) | 41,176(92%) | 23,836(54%) | 15,787(35%) |
Fe | 8054 | 41,898 | 32,283(77%) | 39,207(94%) | 41,499(99%) | 20,881(50%) | 14,427(34%) |
Na | 7516 | 23,697 | 16,645(70%) | 22,523(95%) | 21,072(89%) | 18,295(77%) | 10,700(45%) |
Mn | 3177 | 14,347 | 9037(63%) | 12,089(84%) | 13,630(95%) | 8755(61%) | 4275(30%) |
K | 2390 | 8819 | 5671(64%) | 7498(85%) | 7678(87%) | 5541(63%) | 2973(34%) |
Ni | 1533 | 3578 | 2803(78%) | 2752(77%) | 2943(82%) | 2093(58%) | 986(28%) |
Cu | 1469 | 6918 | 5913(85%) | 5548(80%) | 6474(94%) | 3676(53%) | 2111(31%) |
Co | 1146 | 3601 | 2897(80%) | 2920(81%) | 3288(91%) | 1687(47%) | 976(27%) |
Cd | 926 | 6535 | 5351(82%) | 4708(72%) | 4863(74%) | 2334(36%) | 624(10%) |
Hg | 640 | 2302 | 1525(66%) | 808(35%) | 2223(97%) | 528(23%) | 11(0%) |
U | 507 | 6032 | 5522(92%) | 4553(75%) | 5196(86%) | 2351(39%) | 1693(28%) |
Pt | 242 | 869 | 564(65%) | 212(24%) | 802(92%) | 249(29%) | 4(0%) |
Mo | 209 | 785 | 685(87%) | 505(64%) | 692(88%) | 323(41%) | 147(19%) |
Al | 189 | 399 | 187(47%) | 390(98%) | 399(100%) | 217(54%) | 112(28%) |
Be | 187 | 510 | 273(54%) | 461(90%) | 504(99%) | 318(62%) | 175(34%) |
Ba | 166 | 900 | 399(44%) | 558(62%) | 733(81%) | 186(21%) | 6(1%) |
Ru | 162 | 341 | 288(84%) | 163(48%) | 318(93%) | 113(33%) | 8(2%) |
Sr | 151 | 3972 | 1394(35%) | 3764(95%) | 3869(97%) | 2846(72%) | 745(19%) |
V | 143 | 488 | 285(58%) | 399(82%) | 462(95%) | 219(45%) | 130(27%) |
Cs | 115 | 666 | 402(60%) | 251(38%) | 526(79%) | 226(34%) | 14(2%) |
W | 96 | 1743 | 396(23%) | 1218(70%) | 1639(94%) | 280(16%) | 15(1%) |
Yb | 91 | 247 | 189(77%) | 136(55%) | 127(51%) | 60(24%) | 6(2%) |
Au | 90 | 437 | 275(63%) | 120(27%) | 373(85%) | 136(31%) | 2(0%) |
Li | 73 | 124 | 110(89%) | 116(94%) | 109(88%) | 96(77%) | 72(58%) |
Gd | 65 | 444 | 408(92%) | 268(60%) | 409(92%) | 134(30%) | 22(5%) |
Pb | 62 | 229 | 113(49%) | 87(38%) | 187(82%) | 63(28%) | 5(2%) |
Y | 58 | 218 | 168(77%) | 154(71%) | 108(50%) | 77(35%) | 16(7%) |
Tl | 54 | 400 | 143(36%) | 119(30%) | 383(96%) | 82(21%) | 1(0%) |
Ir | 51 | 333 | 132(40%) | 138(41%) | 317(95%) | 44(13%) | 0(0%) |
Rb | 49 | 229 | 139(61%) | 73(32%) | 174(76%) | 83(36%) | 4(2%) |
Sm | 45 | 205 | 106(52%) | 132(64%) | 142(69%) | 42(20%) | 11(5%) |
Ag | 34 | 381 | 329(86%) | 361(95%) | 365(96%) | 67(18%) | 25(7%) |
Pr | 31 | 77 | 56(73%) | 46(60%) | 40(52%) | 23(30%) | 4(5%) |
Eu | 24 | 71 | 64(90%) | 14(20%) | 60(85%) | 23(32%) | 3(4%) |
Pd | 24 | 108 | 108(100%) | 55(51%) | 79(73%) | 19(18%) | 2(2%) |
Os | 23 | 101 | 34(34%) | 77(76%) | 97(96%) | 20(20%) | 3(3%) |
Re | 21 | 71 | 71(100%) | 27(38%) | 68(96%) | 13(18%) | 3(4%) |
Rh | 20 | 68 | 68(100%) | 25(37%) | 62(91%) | 18(26%) | 1(1%) |
Tb | 18 | 168 | 139(83%) | 134(80%) | 157(93%) | 20(12%) | 3(2%) |
Ta | 18 | 529 | 106(20%) | 42(8%) | 503(95%) | 199(38%) | 0(0%) |
Lu | 15 | 62 | 46(74%) | 31(50%) | 54(87%) | 19(31%) | 0(0%) |
Ho | 13 | 55 | 47(85%) | 43(78%) | 44(80%) | 7(13%) | 0(0%) |
La | 11 | 115 | 107(93%) | 106(92%) | 112(97%) | 1(1%) | 1(1%) |
Cr | 10 | 53 | 43(81%) | 49(92%) | 52(98%) | 8(15%) | 5(9%) |
Ga | 10 | 80 | 80(100%) | 80(100%) | 80(100%) | 5(6%) | 5(6%) |
Sn | 9 | 16 | 16(100%) | 6(38%) | 16(100%) | 2(13%) | 0(0%) |
Sb | 5 | 10 | 4(40%) | 6(60%) | 10(100%) | 7(70%) | 3(30%) |
Ce | 4 | 70 | 70(100%) | 66(94%) | 70(100%) | 0(0%) | 0(0%) |
Er | 3 | 18 | 0(0%) | 17(94%) | 0(0%) | 1(6%) | 0(0%) |
Zr | 3 | 31 | 28(90%) | 30(97%) | 0(0%) | 0(0%) | 0(0%) |
In | 2 | 3 | 1(33%) | 3(100%) | 0(0%) | 1(33%) | 0(0%) |
Bi | 2 | 2 | 2(100%) | 0(0%) | 2(100%) | 0(0%) | 0(0%) |
Hf | 2 | 44 | 44(100%) | 43(98%) | 0(0%) | 10(23%) | 9(20%) |
Dy | 1 | 26 | 26(100%) | 0(0%) | 0(0%) | 18(69%) | 0(0%) |
Total | 66,819 | 33,0448 | 218,698(66%) | 299,138(91%) | 308,616(93%) | 168,843(51%) | 87,660(27%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, S.; Moseley, H.N.B. Finding High-Quality Metal Ion-Centric Regions Across the Worldwide Protein Data Bank. Molecules 2019, 24, 3179. https://doi.org/10.3390/molecules24173179
Yao S, Moseley HNB. Finding High-Quality Metal Ion-Centric Regions Across the Worldwide Protein Data Bank. Molecules. 2019; 24(17):3179. https://doi.org/10.3390/molecules24173179
Chicago/Turabian StyleYao, Sen, and Hunter N.B. Moseley. 2019. "Finding High-Quality Metal Ion-Centric Regions Across the Worldwide Protein Data Bank" Molecules 24, no. 17: 3179. https://doi.org/10.3390/molecules24173179
APA StyleYao, S., & Moseley, H. N. B. (2019). Finding High-Quality Metal Ion-Centric Regions Across the Worldwide Protein Data Bank. Molecules, 24(17), 3179. https://doi.org/10.3390/molecules24173179