Pharmacokinetics and Tissue Distribution of Alnustone in Rats after Intravenous Administration by Liquid Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Establishment
2.1.1. Optimization of LC–MS/MS Conditions
2.1.2. Optimization of Pretreatment Method
2.1.3. The Selection of Internal Standard
2.2. Method Validation
2.2.1. Selectivity and Carry-Over
2.2.2. Linearity
2.2.3. Accuracy and Precision
2.2.4. Recovery and Matrix Effect
2.2.5. Stability
2.3. Pharmacokinetic Study and Tissue Distribution
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instrumentations
3.3. Animals
3.4. Preparation of Calibration Standards and Quality Control Samples
3.5. Preparation of Plasma and Tissues Samples
3.6. Chromatographic and Mass Conditions
3.7. Method Validation
3.7.1. Selectivity
3.7.2. Linearity and LLOQ
3.7.3. Accuracy and Precision
3.7.4. Recovery and Matrix Effect
3.7.5. Stability
3.8. Drug Administration and Sampling
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Suga, T.; Asakawa, Y.; Iwata, N. 1,7-diphenyl-1,3-heptadien-5-ON, einneues keton aus Alnus pendula (Betulaceae). Chem. Ind. (London) 1971, 27, 766–768. [Google Scholar]
- Suga, T.; Iwata, N.; Asakawa, Y. Chemical constituents of the male flower of Alnus pendula (Betulaceae). Bull. Chem. Soc. Jpn. 1972, 7, 2058–2060. [Google Scholar] [CrossRef]
- Aoki, T.; Ohta, S.; Suga, T. Triterpenoids, diarylheptanoids and their glycosides in the flowers of Alnus species. Phytochemistry 1990, 29, 3611–3614. [Google Scholar] [CrossRef]
- Huang, W.Z.; Dai, X.J.; Liu, Y.Q.; Zhang, C.F.; Zhang, M.; Wang, Z.T. Studies on antibacterial activity of flavonoids and diarylheptanoids from Alpinia katsumadai. J. Plant Resour. Environ. 2006, 1, 37–40. [Google Scholar]
- Huang, W.Z.; Zhang, C.F.; Zhang, M.; Wang, Z.T. A new biphenylpropanoid from Alpinia katsumadai. J. Chin. Chem. Soc. 2007, 6, 1553–1556. [Google Scholar] [CrossRef]
- Grienke, U.; Schmidtke, M.; Kirchmair, J.; Pfarr, K.; Wutzler, P.; Durrwald, R.; Wolber, G.; Liedl, K.R.; Stuppner, H.; Rollinger, J.M. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. Med. Chem. 2010, 2, 778–786. [Google Scholar] [CrossRef]
- Kuroyanagi, M.; Noro, T.; Fukushima, S.; Aiyama, R.; Ikuta, A.; Itokawa, H.; Morita, M. Studies on the Constituents of the Seeds of Alpinia katsumadai Hayata. Chem. Pharm. Bull. 1983, 31, 1544–1550. [Google Scholar] [CrossRef]
- Yang, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Tai, T.; Nunoura, Y.; Watanabe, K. Anti-emetic principles of Alpinia katsumadai Hayata. Nat. Prod. Sci. 1999, 5, 20–24. [Google Scholar]
- Yang, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Kondo, S.; Watanabe, K. Structure-antiemetic-activity of some diarylheptanoids and their analogues. Phytomedicine 2002, 9, 146–152. [Google Scholar] [CrossRef]
- Nam, J.W.; Seo, E.K. Structural characterization and biological effects of constituents of the seeds of Alpinia katsumadai (Alpina Katsumadai Seed). Nat. Prod. Commun. 2012, 6, 795–798. [Google Scholar] [CrossRef]
- Claeson, P.; Panthong, A.; Tuchinda, P.; Reutrakul, V.; Kanjanapothi, D.; Taylor, W.C.; Santisuk, T. Three non-phenolic diarylheptanoids with anti-inflammatory activity from Curcuma xanthorrhiza. Planta Med. 1993, 5, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Clseson, P.; Pongprayoon, U.; Sematong, T.; Tuchinda, P.; Reutrakul, V.; Soontornsaratune, P.; Taylor, W.C. Non-phenolic linear diarylheptanoids from Curcuma xanthorrhiza: A novel type of topical anti-inflammatory agents: Structure activity relation ship. Planta Med. 1996, 62, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Suksamrarn, A.; Ponglikitmongkol, M.; Wongkrajang, K.; Chindaduang, A.; Kittidanairak, S.; Jankam, A.; Yingyongnarongkul, B.E.; Kittipanumat, N.; Chokchaisiri, R.; Khetkam, P. Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: Isolation, chemical modification and estrogenic activity evaluation. Bioorg. Med. Chem. 2008, 16, 6891–6902. [Google Scholar] [CrossRef] [PubMed]
- Ishida, J.; Kozuka, M.; Tokuda, H.; Nishino, H.; Nagumo, S.; Lee, K.H.; Nagai, M. Chemopreventive potential of cyclic diarylheptanoids. Bioorg. Med. Chem. 2002, 10, 3361–3365. [Google Scholar] [CrossRef]
- Song, E.; Cho, H.; Kim, J.S.; Kim, N.Y.; An, N.H.; Kim, J.A.; Lee, S.H.; Kim, Y.C. Diarylheptanoids with free radical scavenging and hepato protective activity in vitro from Curcuma longa. Planta Med. 2001, 67, 876–877. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, R.; Hatano, H.; Aiyama, R.; Matsuzaki, T.; Hashimoto, S.; Yokokura, T. Diarylheptanoids suppress expression of leukocyte adhesion molecules on human vascular endothelial cells. Eur. J. Pharmacol. 2000, 3, 375–385. [Google Scholar] [CrossRef]
- Grienke, U.; Schmidtke, M.; von Grafenstein, S.; Kirchmair, J.; Liedl, K.R.; Rollinger, J.M. Influenza neuraminidase: A druggable target for natural products. Nat. Prod. Rep. 2012, 1, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Hikino, H.; Kiso, Y.; Kato, N.; Hamada, Y.; Shioiri, T.; Aiyama, R.; Itokawa, H.; Kiuchi, F.; Sankawa, U. Antihepatotoxic actions of gingerols and diarylheptanoids. J. Ethnopharmacol. 1985, 1, 31–39. [Google Scholar]
- Li, Y.Y.; Li, Y.; Wang, C.H.; Chou, G.X.; Wang, Z.T. Chemical constituents from seeds of Alpinia Katsumadai Hayata. Acta Univ. Tradit. Med. Sin. Pharmacol. Shanghai 2010, 24, 72–75. [Google Scholar]
- Kucukoglu, K.; Seçinti, H.; Ozgur, A.; Seçen, H.; Tutar, Y. Synthesis, molecular docking, and antitumoral activity of alnustone-like compounds against estrogen receptor alpha-positive human breast cancer. Turkish J. Chem. 2015, 1, 179–193. [Google Scholar] [CrossRef]
- Goksu, S.; Celik, H.; Secen, H. An efficient synthesis of alnustone, a naturally occurring compound. Turkish J. Chem. 2002, 1, 31–34. [Google Scholar]
- Li, Y.Y.; Chou, G.X.; Yang, L.; Wang, Z.T. Qualitative and quantitative methods for Alpiniae Katsumadai Semen. China J. Chin. Mater. Medica 2010, 16, 2091–2094. [Google Scholar]
- Sun, H.; He, S.L. Quality control for components in Yangweining capsule based on HPLC wavelength switching method. Anhui Med. Pharmaceutical J. 2019, 3, 473–476. [Google Scholar]
- Wang, C.Y.; Li, A.F.; Sun, A.L.; Liu, R.M. Separation of Active Components in Alpinia katsumadai Hayata by Semi-prepartive High Performance Liquid Chromatography. J. Anhui Agri. Sci. 2016, 24, 127–130. [Google Scholar]
- Lakota, E.A.; Bader, J.C.; Rubino, C.M. Ensuring quality pharmacokinetic analyses in antimicrobial drug development programs. Curr. Opin. Pharmacol. 2017, 36, 139–145. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, J.; Zhao, M.; Song, W.; Qi, X.; Wang, Y.; Lu, L.; Liu, Z. Mdr1a plays a crucial role in regulating the analgesic effect and toxicity of aconitine by altering its pharmacokinetic characteristics. Toxicol. Appl. Pharmacol. 2017, 320, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q. Research Methods in Pharmacology of Chinese Materia Medica, 3rd ed.; People’s Medical Publishing House: Beijing, China, 2011. [Google Scholar]
- Sharma, D.R.; Sunkaria, A.; Bal, A.; Bhutia, Y.D.; Vijayaraghavan, R.; Flora, S.J.; Gill, K.D. Neurobehavioral impairments, generation of oxidative stress and release of pro-apoptotic factors after chronic exposure to sulphur mustard in mouse brain. Toxicol. Appl. Pharmacol. 2009, 15, 208–218. [Google Scholar] [CrossRef]
- Tao, X.; Cush, J.J.; Garret, M.; Lipsky, P.E. A phase I study of ethyl acetate extract of the chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J. Rheumatol. 2005, 10, 2160–2167. [Google Scholar]
- Huang, X.Y.; Duan, Q.Y.; Liu, J.X.; Di, D.L. Determination of a novel diarylheptanoid (Juglanin B) from green walnut husks (Juglans regia L.) in rat plasma by high-performance liquid chromatography. Biomed. Chromatogr. 2010, 3, 307–311. [Google Scholar]
- Su, J.; Sripanidkulchai, K.; Suksamrarn, A.; Hu, Y.; Piyachuturawat, P.; Sripanidkulchai, B. Pharmacokinetics and organ distribution of diarylheptanoid phytoestrogens from Curcuma comosa in rats. J. Nat. Med. 2012, 3, 468–475. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Bioanalytical Method Validation Guidance for Industry 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 30 August 2019).
- Center of Clinical Drug Research, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China. Drug Analysis System [CP/DK]. Available online: http://www.drugchina.net/# (accessed on 30 August 2019).
Sample Availability: Samples of the compounds alnustone and caffeine are available from the authors. |
Samples | Calibration Curves | Correlation Coefficients (r) | SES * | SEI # | Linear Ranges (ng/mL) | LLOQs (ng/mL) |
---|---|---|---|---|---|---|
Plasma | Y = 0.0256 + 0.00838x | 0.996 | 5.5 × 10−5 | 0.13 | 1–2000 | 1 |
Intestine | Y = 0.022 + 0.00302x | 0.991 | 6.7 × 10−5 | 0.12 | 1–2000 | 1 |
Heart | Y = 0.0174 + 0.00197x | 0.992 | 1 × 10−4 | 0.12 | 1–2000 | 1 |
Liver | Y = 0.063 + 0.00146x | 0.993 | 9.5 × 10−5 | 0.10 | 1–2000 | 1 |
Spleen | Y = 0.00038 + 0.00414x | 0.992 | 1.2 × 10−4 | 0.18 | 1–2000 | 1 |
Lung | Y = 0.0138 + 0.002x | 0.995 | 1.2 × 10−4 | 0.09 | 1–2000 | 1 |
Kidney | Y = 0.0359 + 0.00207x | 0.994 | 8.9 × 10−5 | 0.15 | 1–2000 | 1 |
Stomach | Y = –0.00332 + 0.00194x | 0.996 | 6.2 × 10−5 | 0.22 | 1–2000 | 1 |
Brain | Y = −0.0458 + 0.00287x | 0.995 | 1.4 × 10−4 | 0.17 | 1–2000 | 1 |
Samples | QC Conc. (ng/mL) | Intra-Day | Inter-Day | ||
---|---|---|---|---|---|
Precision (RSD, %) | Accurary (mean%) | Precision (RSD, %) | Accurary (mean%) | ||
Plasma | 1 | 7.2 | 8.8 | 7.5 | 6.9 |
5 | 1.1 | 9.7 | 5.0 | 9.9 | |
100 | 6.3 | −6.5 | 4.3 | −6.2 | |
1600 | 5.2 | −8.2 | 8.1 | 6.9 | |
Heart | 1 | 8.1 | −9.7 | 6.6 | −10.7 |
5 | 6.4 | 8.0 | 5.7 | −10.3 | |
100 | 3.6 | 3.7 | 7.5 | 2.7 | |
1600 | 8.0 | 3.7 | 4.3 | 3.1 | |
Liver | 1 | 5.7 | 4.3 | 5.8 | 5.0 |
5 | 4.3 | 7.7 | 4.1 | −6.6 | |
100 | 8.9 | 9.7 | 5.6 | 0.6 | |
1600 | 9.0 | −5.9 | 6.1 | 6.6 | |
Spleen | 1 | 9.0 | −10.3 | 7.6 | −6.4 |
5 | 7.0 | -3.6 | 5.0 | −1.3 | |
100 | 7.0 | 2.2 | 3.6 | 5.7 | |
1600 | 1.9 | 8.0 | 4.1 | −6.8 | |
Lung | 1 | 6.6 | −8.3 | 5.8 | −5.1 |
5 | 5.7 | −6.2 | 5.3 | −1.5 | |
100 | 7.5 | 0.6 | 6.5 | 8.1 | |
1600 | 5.1 | −8.1 | 6.7 | 4.3 | |
Kidney | 1 | 4.9 | 11.2 | 5.7 | 10.0 |
5 | 4.2 | −6.0 | 4.4 | 6.1 | |
100 | 6.6 | 8.0 | 6.6 | 1.2 | |
1600 | 3.5 | −7.2 | 8.4 | −5.3 | |
Brain | 1 | 5.7 | 8.6 | 6.1 | 9.3 |
5 | 7.9 | 1.3 | 3.3 | 9.6 | |
100 | 5.9 | 5.5 | 8.6 | −3.4 | |
1600 | 5.9 | −4.5 | 3.3 | 1.4 | |
Intestine | 1 | 4.9 | −7.9 | 6.8 | −4.1 |
5 | 4.1 | −1.8 | 4.3 | −6.1 | |
100 | 8.0 | 4.2 | 5.9 | 2.6 | |
1600 | 7.5 | −2.1 | 6.8 | −1.8 | |
Stomach | 1 | 6.2 | −8.7 | 5.3 | −5.2 |
5 | 4.9 | 3.5 | 3.5 | −7.69 | |
100 | 2.8 | −3.1 | 7.9 | 0.8 | |
1600 | 7.0 | 2.8 | 6.4 | −6.3 |
Samples | QC Conc. (ng/mL) | Matrix Effect | Recovery | ||
---|---|---|---|---|---|
Mean ± SD (%) | RSD (%) | Mean ± SD (%) | RSD (%) | ||
Plasma | 1 | 113.7 ± 6.9 | 5.2 | 83.5 ± 5.6 | 5.4 |
5 | 105.4 ± 4.3 | 4.1 | 88.7 ±4.4 | 5.0 | |
100 | 91.3 ± 9.6 | 10.5 | 95.7 ± 2.2 | 2.3 | |
1600 | 89.5 ± 4.3 | 4.8 | 95.4 ± 3.1 | 3.3 | |
Heart | 1 | 102.1 ± 5.2 | 5.0 | 105.1 ± 4.2 | 4.3 |
5 | 93.8 ± 4.3 | 4.6 | 88.3 ± 2.6 | 3.0 | |
100 | 98.2 ± 7.6 | 7.7 | 102.3 ± 3.8 | 3.7 | |
1600 | 109.1 ± 3.7 | 3.4 | 98.7 ± 1.6 | 1.7 | |
Liver | 1 | 116.9 ± 10.3 | 8.0 | 85.7 ± 5.6 | 4.1 |
5 | 114.4 ± 9.9 | 8.6 | 91.1 ± 3.2 | 3.5 | |
100 | 97.7 ± 9.1 | 9.3 | 95.8 ± 4.3 | 4.4 | |
1600 | 98.7 ± 4.6 | 4.6 | 90.1 ± 4.0 | 4.4 | |
Spleen | 1 | 113.5 ± 4.9 | 6.5 | 102.9 ± 6.0 | 4.7 |
5 | 106.1 ± 5.4 | 5.1 | 106.9 ± 4.0 | 3.7 | |
100 | 109.8 ± 5.6 | 5.1 | 91.2 ± 3.9 | 4.3 | |
1600 | 112.9 ± 4.3 | 3.8 | 86.7 ± 0.4 | 0.4 | |
Lung | 1 | 112.6 ± 6.3 | 7.9 | 90.3 ± 6.7 | 4.6 |
5 | 103.6 ± 7.6 | 7.3 | 92.8 ± 3.1 | 3.3 | |
100 | 91.1 ± 9.6 | 10.6 | 94.7 ± 1.3 | 1.3 | |
1600 | 92.0 ± 9.8 | 10.6 | 87.6 ± 2.7 | 3.1 | |
Kidney | 1 | 80.7 ± 8.0 | 5.6 | 87.8 ± 6.1 | 5.0 |
5 | 93.9 ± 7.4 | 7.9 | 90.1 ± 2.0 | 2.3 | |
100 | 113.4 ± 3.6 | 3.2 | 91.8 ± 2.0 | 2.2 | |
1600 | 109.9 ± 8.1 | 7.4 | 97.4 ± 5.4 | 5.5 | |
Brain | 1 | 113.4 ± 6.0 | 6.2 | 90.3 ± 6.0 | 5.8 |
5 | 105.7 ± 5.5 | 5.2 | 95.7 ± 4.2 | 4.4 | |
100 | 99.2 ± 3.0 | 3.0 | 92.4 ± 3.6 | 3.9 | |
1600 | 94.3 ± 3.4 | 3.6 | 110.4 ± 3.5 | 3.2 | |
Intestine | 1 | 89.6 ± 6.7 | 6.1 | 90.7 ± 5.7 | 5.8 |
5 | 92.0 ± 2.0 | 2.2 | 91.8 ± 4.3 | 4.7 | |
100 | 107.3 ± 8.2 | 7.7 | 93.4 ± 3.5 | 3.7 | |
1600 | 90.7 ± 7.7 | 8.5 | 96.7 ± 3.1 | 3.2 | |
Stomach | 1 | 113.5 ± 6.2 | 6.2 | 88.6 ± 5.6 | 5.0 |
5 | 110.6 ± 2.8 | 2.5 | 93.0± 2.3 | 2.5 | |
100 | 89.9 ± 4.6 | 5.1 | 86.3 ± 4.1 | 4.8 | |
1600 | 91.2 ± 3.1 | 3.3 | 87.6 ± 2.9 | 3.3 |
Samples | QC Conc. (ng/mL) | Short-Term (at Room Temperature for 4 h) | Autosampler 4 °C for 24 h | Three Freeze-Thraw Cycles | Storage at −75°C for 30 d |
---|---|---|---|---|---|
Plasma | 1 | 108.5 ± 7.6 | 95.5 ± 5.0 | 114.1 ± 5.1 | 98.9 ± 5.7 |
5 | 112.7 ± 8.8 | 93.4 ± 4.3 | 112.7 ± 4.9 | 99.2 ± 6.5 | |
100 | 99.8 ± 5.6 | 101.2 ± 7.5 | 93.2 ± 7.1 | 107.2 ± 6.7 | |
1600 | 104.8 ± 5.2 | 108.4 ± 5.5 | 98.6 ± 2.3 | 94.8 ± 5.0 | |
Heart | 1 | 109.6 ± 6.0 | 88.7 ± 8.6 | 103.8 ± 5.3 | 107.5± 6.3 |
5 | 104.3 ± 4.3 | 91.8 ± 8.7 | 109.1 ± 4.1 | 101.0 ± 5.3 | |
100 | 101.0± 3.2 | 89.0 ± 3.4 | 104.8 ± 6.6 | 112.4 ± 4.0 | |
1600 | 91.8 ± 5.8 | 90.3 ± 5.2 | 95.3 ± 9.0 | 95.6 ± 5.4 | |
Liver | 1 | 98.8 ± 6.8 | 93.1 ± 5.7 | 101.5 ± 10.1 | 111.5 ± 6.9 |
5 | 95.4 ± 5.8 | 95.3 ± 3.2 | 98.8 ± 9.9 | 106.5 ± 10.1 | |
100 | 111.0 ± 4.9 | 101.3 ± 5.6 | 108.4 ± 7.8 | 105.4 ± 7.2 | |
1600 | 106.4 ± 6.0 | 94.8 ± 7.7 | 98.3 ± 6.3 | 97.7 ± 6.8 | |
Spleen | 1 | 108.5± 6.4 | 108.0 ± 6.0 | 101.2 ± 7.4 | 102.3 ± 4.9 |
5 | 114.7 ± 5.8 | 101.8 ± 4.3 | 106.2 ± 6.9 | 98.1 ± 3.9 | |
100 | 107.5 ± 8.9 | 92.9 ± 6.5 | 105.3 ± 3.1 | 114.3 ± 6.6 | |
1600 | 104.4 ± 6.1 | 102.1 ± 9.3 | 92.9 ± 7.6 | 104.0 ± 3.2 | |
Lung | 1 | 89.5 ± 7.6 | 105.8 ± 7.0 | 108.2 ± 9.5 | 103.4 ± 8.7 |
5 | 92.4 ± 6.4 | 103.4 ± 7.1 | 105.8 ± 8.7 | 93.0 ± 9.6 | |
100 | 106.4 ± 8.6 | 98.4 ± 5.4 | 94.4 ± 2.6 | 101.0 ± 7.5 | |
1600 | 91.2 ± 6.8 | 100.6 ± 9.7 | 93.8 ± 4.6 | 92.3 ± 6.3 | |
Kidney | 1 | 107.8 ± 7.5 | 116.5 ± 8.0 | 93.7 ± 7.0 | 89.8 ± 8.1 |
5 | 110.7 ± 6.6 | 114.1 ± 7.4 | 95.7 ± 5.7 | 88.5 ± 6.4 | |
100 | 109.7 ± 8.3 | 108.0 ± 5.7 | 90.9 ± 7.0 | 111.0 ± 7.5 | |
1600 | 100.7 ± 7.0 | 95.9 ± 6.0 | 112.5 ± 5.2 | 100.5 ± 10.6 | |
Brain | 1 | 110.6 ± 5.8 | 109.2 ± 6.7 | 86.5 ± 6.1 | 103.8 ± 4.1 |
5 | 109.0± 4.4 | 104.9 ± 7.0 | 89.2 ± 4.6 | 108.9 ± 3.8 | |
100 | 99.3 ± 7.5 | 95.4 ± 5.7 | 98.0 ± 8.1 | 90.2 ± 7.4 | |
1600 | 96.3 ± 7.4 | 104.2 ± 4.9 | 110.2 ± 6.8 | 112.3 ± 8.9 | |
Intestine | 1 | 89.6 ± 8.1 | 90.0 ± 5.7 | 113.7 ± 8.7 | 96.5 ± 5.7 |
5 | 95.8 ± 7.7 | 90.9 ± 5.0 | 108.7 ± 9.4 | 92.6 ± 3.7 | |
100 | 95.3 ± 6.7 | 98.0 ± 4.9 | 96.9 ± 3.8 | 114.4 ± 4.9 | |
1600 | 105.9 ± 7.1 | 103.0 ± 8.4 | 113.6 ± 2.8 | 107.0 ± 4.3 | |
Stomach | 1 | 95.1 ± 6.8 | 93.2 ± 8.5 | 102.2 ± 5.1 | 107.4 ± 6.2 |
5 | 93.8 ± 5.9 | 98.8 ± 9.6 | 93.2 ± 4.3 | 94.9 ± 7.2 | |
100 | 104.4 ± 5.5 | 104.4 ± 5.5 | 114.0 ± 4.9 | 107.0 ± 6.7 | |
1600 | 114.9 ± 6.8 | 107.9 ± 8.7 | 104.7 ± 5.8 | 93.8 ± 7.6 |
Pharmacokinetic Parameters | Dose of i.v. Administration (5 mg/kg) |
---|---|
Cmax (ng/mL) | 7066.36 ± 820.62 |
t1/2 (h) | 1.31 ± 0.19 |
AUC0–t (ng/mL∙h) | 6009.79 ± 567.30 |
AUC0–∞ (ng/mL∙h) | 6032.45 ± 472.50 |
MRT0–∞ (h) | 1.60 ± 0.22 |
CL (L/h/kg) | 0.83 ± 0.09 |
Vd (L/kg) | 1.57 ± 0.18 |
Time (h) | Heart | Liver | Spleen | Lung | Kidney | Brain | Intestine | Stomach |
---|---|---|---|---|---|---|---|---|
0.5 | 0.36 ± 0.06 | 1.28 ± 0.34 | 0.46 ± 0.06 | 1.30 ± 0.09 | 0.58 ± 0.07 | 0.11 ± 0.40 | 0.39 ± 0.07 | 0.64 ± 0.14 |
1 | 0.42 ± 0.10 | 1.31 ± 0.18 | 1.24 ± 0.13 | 3.39 ± 0.39 | 0.74 ± 0.11 | 0.21 ± 0.56 | 0.66 ± 0.12 | 0.52 ± 0.11 |
2 | 0.59 ± 0.17 | 1.28 ± 0.29 | 0.70 ± 0.06 | 4.55 ± 0.61 | 1.49 ± 0.27 | 0. 33 ± 0.10 | 0.88 ± 0.19 | 0.70 ± 0.03 |
4 | 1.78 ± 0.24 | 5.48 ± 0.66 | 1.54 ± 0.32 | 15.84 ± 1.33 | 1.86 ± 0.18 | 1.03 ± 0.08 | 1.18 ± 0.20 | 3.66 ± 0.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zhou, Y.; Yan, X.-T.; Bi, J.-B.; Qiu, X.; Bian, Y.; Wang, K.-F.; Zhang, Y.; Feng, X.-S. Pharmacokinetics and Tissue Distribution of Alnustone in Rats after Intravenous Administration by Liquid Chromatography-Mass Spectrometry. Molecules 2019, 24, 3183. https://doi.org/10.3390/molecules24173183
Song Y, Zhou Y, Yan X-T, Bi J-B, Qiu X, Bian Y, Wang K-F, Zhang Y, Feng X-S. Pharmacokinetics and Tissue Distribution of Alnustone in Rats after Intravenous Administration by Liquid Chromatography-Mass Spectrometry. Molecules. 2019; 24(17):3183. https://doi.org/10.3390/molecules24173183
Chicago/Turabian StyleSong, Yang, Yu Zhou, Xiao-Ting Yan, Jing-Bo Bi, Xin Qiu, Yu Bian, Ke-Fei Wang, Yuan Zhang, and Xue-Song Feng. 2019. "Pharmacokinetics and Tissue Distribution of Alnustone in Rats after Intravenous Administration by Liquid Chromatography-Mass Spectrometry" Molecules 24, no. 17: 3183. https://doi.org/10.3390/molecules24173183
APA StyleSong, Y., Zhou, Y., Yan, X. -T., Bi, J. -B., Qiu, X., Bian, Y., Wang, K. -F., Zhang, Y., & Feng, X. -S. (2019). Pharmacokinetics and Tissue Distribution of Alnustone in Rats after Intravenous Administration by Liquid Chromatography-Mass Spectrometry. Molecules, 24(17), 3183. https://doi.org/10.3390/molecules24173183