Ionic Liquids Enhanced Alkynyl Schiff Bases Derivatives of Fipronil Synthesis and Their Cytotoxicity Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of 4-Substituted-N-arylpyrazole Schiff Bases 3a–3k
2.2. Biological Studies
3. Materials and Methods
3.1. Synthesis
3.1.1. General Information
3.1.2. Synthesis of 4-ethynylbenzaldehyde (2)
3.1.3. Synthesis of 4-Substituted N-arylpyrazole Schiff Base (3a–3k)
- Ionic liquids assisted synthesis. The 4-substituted-5-amino-N-arylpyrazole compounds 1a–1k (0.46 mmol) were first dissolved into the ionic liquids (3 mL), then 4-ethynylbenzaldehyde (2) (0.38 mmol) and hydrochloric acid (6 M) was added into the above mixture successively and, subsequently, stirred for 48 h. After the reaction finished, the reaction mixture was extracted with Et2O, the upper phase was concentrated, and purified by CC to get the target compounds. In addition, the lower phase was the ionic liquids because of its low solubility in Et2O, and it was concentrated by vacuum distillation for recycling use.
- Conventional solvent synthesis. The 4-substituted-5-amino-N-arylpyrazole compounds 1a–1k (0.46 mmol) and 4-ethynylbenzaldehyde (2) (0.38 mmol) were dissolved in toluene, following 1 g Resin 732 and 1 g 4 Å molecular sieve were added. The reaction mixture was refluxed 168 h, and then cooled to room temperature and filtered. The filtrate was evaporated in vacuo. The residue was purified by silica gel column chromatography (petroleum ether/EtOAc) to get the target product.
3.2. Biological Studies
3.2.1. Cell Culture
3.2.2. Cytotoxicity of the Compounds in Cell Lines
3.2.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hainzl, D.; Cole, L.M.; Casida, J.E. Mechanisms for selective toxicity of fipronil insecticide and its sulfone metabolite and desulfinyl photoproduct. Chem. Res. Toxicol. 1998, 11, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Liu, X.; Xie, Y.; Lin, F.; Zhang, Z.; Zhao, C.; Xu, H. Synthesis of novel amino acid-fipronil conjugates and study on their phloem loading mechanism. Molecules 2018, 23, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, D.; Huggett, D.B.; Allgood, J.; Bennett, E.; Rimoldi, J.; Beeler, A.B.; Block, D.; Holder, A.W.; Hovinga, R.; Bedient, P. Toxicity of fipronil and its degradation products to procambarus sp.: Field and laboratory studies. Arch. Environ. Con. Tox. 2001, 41, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Aajoud, A.; Ravanel, P.; Tissut, M. Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J. Agric. Food. Chem. 2003, 51, 1347–1352. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, D.; Morrissey, C.; Mineau, P. Erratum to: A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. Int. 2016, 23, 947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, L.; He, L.; Yang, X.; Shi, Y.; Liao, S.; Yang, S.; Cheng, J.; Ren, T. Interactions of fipronil within fish and insects: Experimental and molecular modeling studies. J. Agric. Food. Chem. 2018, 66, 5756–5761. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Zanetti, R.; Santos, J.C.; Biagiotti, G.; Evangelista, A.L.; Serrão, J.E.; Zanuncio, J.C. Persistence of fipronil residues in eucalyptus seedlings and its concentration in the insecticide solution after treatment in the nursery. Environ. Monit. Assess. 2016, 188, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A.D.; et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 2015, 22, 35–67. [Google Scholar] [CrossRef]
- Sadaria, A.M.; Labban, C.W.; Steele, J.C.; Maurer, M.M.; Halden, R.U. Retrospective nationwide occurrence of fipronil and its degradates in U.S. wastewater and sewage sludge from 2001–2016. Water Res. 2019, 155, 465–473. [Google Scholar] [CrossRef]
- Gunasekara, A.S.; Truong, T.; Goh, K.S.; Spurlock, F.; Tjeerdema, R.S. Environmental fate and toxicology of fipronil. J. Pestic. Sci. 2007, 32, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Hainzl, D.; Casida, J.E. Fipronil insecticide: Novel photochemical desulfinylation with retention of neurotoxicity. PNAS 1996, 93, 12764–12767. [Google Scholar] [CrossRef] [PubMed]
- Caboni, P.; Sammelson, R.E.; Casida, J.E. Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: Ethiprole compared with fipronil. J. Agric. Food. Chem. 2003, 51, 7005–7061. [Google Scholar] [CrossRef] [PubMed]
- Sammelson, R.E.; Caboni, P.; Durkin, K.A.; Casida, J.E. GABA receptor antagonists and insecticides: Common structural features of 4-alkyl-1-phenylpyrazoles and 4-alkyl-1-phenyltrioxabicyclooctanes. Bioorg. Med. Chem. 2004, 12, 3345–3355. [Google Scholar] [CrossRef] [PubMed]
- Yasuo, K. Protection of buildings against termites by 1-Arylpyrazoles. EP0845211, 29 November 1996. [Google Scholar]
- Huang, J.; Ayad, H.M.; Timmons, P.R. Preparation of 1-aryl-5-(arylalkylideneimino)-pyrazoles as Pesticides. EP 0511845, 29 April 1992. [Google Scholar]
- Okano, K.; Sumitani, N.; Miyauchi, A.; Yabe, A. Preparation of 4-amino-1-phenyl-3-cyanopyrazole Derivatives and Process for Producing the Same, and Pesticides Containing the Same as the Active Ingredient. WO 2001000614, 4 January 2001. [Google Scholar]
- Okui, S.; Kyomura, N.; Fukuchi, T.; Okano, K.; He, L.; Miyauchi, A. Preparation Process of Pyrazole Derivatives in Pest Controllers Containing the Same as the Active Ingredient. WO 2002010153, 1 January 2002. [Google Scholar]
- Chen, L.; Wu, Z.; Du, Y.; Huang, Y.; Jin, S. Solvothermal synthesis of novel phenylpyrazole Schiff base fluorescent insecticides fused extended conjugate units for enhancing bioactivities, photophysical and electrochemical properties. J. Mol. Struct. 2019, 1196, 555–566. [Google Scholar] [CrossRef]
- Bertók, B.; Pap, L.; Árvai, G.; Bakonyvári, I.; Ribai, Z.K. Structure–activity relationship study of alkynyl ether insecticide synergists and the development of MB-599 (verbutin). Pest. Manag. Sci. 2003, 59, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Talebi, K.; Naveh, V.H.; Kavousi, A. Impacts of the pesticides imidacloprid, propargite, and pymetrozine on Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae): IOBC and life table assays. BioControl 2007, 52, 385–398. [Google Scholar] [CrossRef]
- Gitsopoulos, T.K.; Froud-Williams, R.J. Effects of oxadiargyl on direct-seeded rice and Echinochloa crus-galli under aerobic and anaerobic conditions. Weed Res. 2004, 44, 329–334. [Google Scholar] [CrossRef]
- Terada, M.; Mizuhashi, F.; Murata, K.; Tomita, T. Mepanipyrim, a New Fungicide, Inhibits intracellular transport of very low density lipoprotein in rat hepatocytes. Toxicol. Appl. Pharmacol. 1999, 154, 1–11. [Google Scholar] [CrossRef]
- Vekariya, R.L. A review of ionic liquids: Applications towards catalytic organic transformations. J. Mol. Liq. 2017, 227, 44–60. [Google Scholar] [CrossRef]
- Miao, W.; Chan, T.H. Ionic-liquid-supported synthesis: A novel liquid-phase strategy for organic synthesis. Acc. Chem. Res. 2006, 39, 897–908. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, J.S. Properties of ionic liquid solvents for catalysis. J. Mol. Catal. A Chem. 2004, 214, 11–17. [Google Scholar] [CrossRef]
- Olivier-Bourbigou, H.; Magna, L. Ionic liquids: Perspectives for organic and catalytic reactions. J. Mol. Catal. A Chem. 2002, 182–183, 419–437. [Google Scholar] [CrossRef]
- Tan, Z.J.; Wang, C.Y.; Yang, Z.Z.; Yi, Y.J.; Wang, H.Y.; Zhou, W.L.; Li, F.F. Ionic Liquid-based ultrasonic-assisted extraction of secoisolariciresinol diglucoside from flaxseed (Linum usitatissimum L.) with further purification by an aqueous two-phase system. Molecules 2015, 20, 17929–17943. [Google Scholar] [CrossRef] [PubMed]
- Phadtare, S.B.; Shankarling, G.S. Halogenation reactions in biodegradable solvent: Efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride: urea). Green Chem. 2010, 12, 458–462. [Google Scholar] [CrossRef]
- Ruß, C.; König, B. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green Chem. 2012, 14, 2969–2982. [Google Scholar] [CrossRef]
- Austin, W.B.; Bilow, N.; Kelleghan, W.J.; Lau, K.S.Y. Facile synthesis of ethynylated benzoic acid derivatives and aromatic compounds via ethynyltrimethylsilane. J. Org. Chem. 1981, 46, 2280–2286. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, J.; Huang, C.; Lei, Z. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev. 2017, 117, 6929–6983. [Google Scholar] [CrossRef]
- Arif, B.; Pavlik, L. Insect cell culture: Virus replication and applications in biotechnology. J. Invertebr. Pathol. 2013, 112, 138–141. [Google Scholar] [CrossRef]
- Smagghe, G.; Goodman, C.L.; Stanley, D. Insect cell culture and applications to research and pest management. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 93–105. [Google Scholar] [CrossRef]
- Mena, J.A.; Kamen, A.A. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert. Rev. Vaccines 2011, 10, 1063–1081. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 3a–3k are available from the authors. |
Entry | Compounds | Inhibition (%) (X ± SE) Φ | |
---|---|---|---|
R | Hi-5 Cell | SL Cell | |
3a | -H | 72.85 ± 1.98 c | 40.83 ± 0.63 e |
3b | -Cl | 54.48 ± 2.91 e | 25.56 ± 0.61 h |
3c | -Br | 65.18 ± 1.97 d | 50.32 ± 0.57 d |
3d | -I | 86.90 ± 1.92 b | 20.14 ± 1.28 i |
3e | -Me | 44.36 ± 1.99 f | 6.57 ± 0.36 j |
3f | -Et | 96.80 ± 1.81 a | 5.22 ± 0.76 j |
3g | -Pr | 63.60 ± 2.00 d | 29.10 ± 0.46 g |
3h | -i-Pr | 36.56 ± 1.61 g | 33.81 ± 0.58 f |
3i | -n-Bu | 52.96 ± 2.94 e | 32.75 ± 0.60 f |
3j | -i-Bu | 39.86 ± 2.33 f,g | 67.89 ± 0.76 b |
3k | -t-Bu | 27.87 ± 2.61 h | 58.55 ± 0.71 c |
fipronil | -SOCF3 | 97.54 ± 1.33 a | 75.93 ± 0.50 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Huang, L.; Chen, H.; Li, N.; Yan, C.; Jin, C.; Xu, H. Ionic Liquids Enhanced Alkynyl Schiff Bases Derivatives of Fipronil Synthesis and Their Cytotoxicity Studies. Molecules 2019, 24, 3223. https://doi.org/10.3390/molecules24183223
Liu X, Huang L, Chen H, Li N, Yan C, Jin C, Xu H. Ionic Liquids Enhanced Alkynyl Schiff Bases Derivatives of Fipronil Synthesis and Their Cytotoxicity Studies. Molecules. 2019; 24(18):3223. https://doi.org/10.3390/molecules24183223
Chicago/Turabian StyleLiu, Xiu, Linya Huang, Hongjun Chen, Na Li, Chao Yan, Chenzhong Jin, and Hanhong Xu. 2019. "Ionic Liquids Enhanced Alkynyl Schiff Bases Derivatives of Fipronil Synthesis and Their Cytotoxicity Studies" Molecules 24, no. 18: 3223. https://doi.org/10.3390/molecules24183223
APA StyleLiu, X., Huang, L., Chen, H., Li, N., Yan, C., Jin, C., & Xu, H. (2019). Ionic Liquids Enhanced Alkynyl Schiff Bases Derivatives of Fipronil Synthesis and Their Cytotoxicity Studies. Molecules, 24(18), 3223. https://doi.org/10.3390/molecules24183223