Pharmacokinetic Profiling and Simultaneous Determination of Thiopurine Immunosuppressants and Folic Acid by Chromatographic Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pharmacokinetic Profiling
2.1.1. RP-TLC and RP-HPLC Assays
2.1.2. Phospholipid Binding Assay
2.1.3. Protein Binding Assays
2.1.4. Comparison of Biomimetic Chromatographic and Computational Data
2.2. Analysis of Pharmaceutical Dosage Forms
2.2.1. Method Development
2.2.2. Validation of the Method
2.2.3. Application of the Method
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Equipment
3.3. Preparation of Stock and Working Solutions
3.4. RP-TLC Assay
3.5. RP-HPLC Assay
3.6. Phospholipid Binding Assay
3.7. Protein Binding Assays
3.8. Analysis of Pharmaceutical Dosage Forms
3.8.1. Sample Preparation
3.8.2. Sample Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reinglas, J.; Gonczi, L.; Kurt, Z.; Bessissow, T.; Lakatos, P.L. Positioning of old and new biologicals and small molecules in the treatment of inflammatory bowel diseases. World J. Gastroenterol. 2018, 24, 3567–3582. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Furton, K.G.; Tinari, N.; Grossi, L.; Innosa, D.; Macerola, D.; Tartaglia, A.; Di Donato, V.; D’Ovidio, C.; Locatelli, M. Fabric phase sorptive extraction-high performance liquid chromatography-photo diode array detection method for simultaneous monitoring of three inflammatory bowel disease treatment drugs in whole blood, plasma and urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1084, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Burr, N.; Hull, M.A.; Subramanian, V. Folic Acid Supplementation May Reduce Colorectal Cancer Risk in Patients with Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2016, 51, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Weisshof, R.; Chermesh, I. Micronutrient deficiencies in inflammatory bowel disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Scaldaferri, F.; Pizzoferrato, M.; Lopetuso, L.R.; Musca, T.; Ingravalle, F.; Sicignano, L.L.; Mentella, M.; Miggiano, G.; Mele, M.C.; Gaetani, E.; et al. Nutrition and IBD: Malnutrition and/or Sarcopenia? A Practical Guide. Gastroenterol. Res. Pract. 2017, 2017, 8646495. [Google Scholar] [CrossRef] [PubMed]
- Van Der Woude, C.; Ardizzone, S.; Bengtson, M.; Fiorino, G.; Fraser, G.; Katsanos, K.; Kolacek, S.; Juillerat, P.; Mulders, A.; Pedersen, N.; et al. The Second European Evidenced-Based Consensus on Reproduction and Pregnancy in Inflammatory Bowel Disease. J. Crohn’s Coliti 2015, 9, 107–124. [Google Scholar] [CrossRef] [PubMed]
- Ghadir, M.R.; Bagheri, M.; Vahedi, H.; Ebrahimi-Daryani, N.; Malekzadeh, R.; Hormati, A.; Kolahdoozan, S.; Chaharmahali, M. Nonadherence to Medication in Inflammatory Bowel Disease: Rate and Reasons. Middle East J. Dig. Dis. 2016, 8, 116–121. [Google Scholar] [CrossRef] [Green Version]
- Testa, A.; Castiglione, F.; Nardone, O.M.; Colombo, G.L. Patient Preference and Adherence Dovepress Adherence in ulcerative colitis: An overview. Patient Prefer. Adherence 2017, 11, 297–303. [Google Scholar] [CrossRef]
- Moon, C.; Oh, E. Rationale and strategies for formulation development of oral fixed dose combination drug products. J. Pharm. Investig. 2016, 46, 615–631. [Google Scholar] [CrossRef]
- Desai, D.; Wang, J.; Wen, H.; Li, X.; Timmins, P. Formulation design, challenges, and development considerations for fixed dose combination (FDC) of oral solid dosage forms. Pharm. Dev. Technol. 2013, 18, 1265–1276. [Google Scholar] [CrossRef]
- Dash, R.P.; Rais, R.; Srinivas, N.R. Key Pharmacokinetic Essentials of Fixed-Dosed Combination Products: Case Studies and Perspectives. Clin. Pharmacokinet. 2018, 57, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Valko, K.L.; Teague, S.P.; Pidgeon, C. In vitro membrane binding and protein binding (IAM MB/PB technology) to estimate in vivo distribution: Applications in early drug discovery. ADMET DMPK 2017, 5, 14–38. [Google Scholar] [CrossRef]
- Jain, P.S.; Thakre, P.; Chaudhari, A.J.; Chavhan, M.L.; Surana, S.J. Determination of azathioprine in bulk and pharmaceutical dosage form by HPTLC. J. Pharm. Bioallied Sci. 2012, 4, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Davarani, S.S.H.; Zad, Z.R.; Taheri, A.R.; Rahmatian, N. Highly selective solid phase extraction and preconcentration of Azathioprine with nano-sized imprinted polymer based on multivariate optimization and its trace determination in biological and pharmaceutical samples. Mater. Sci. Eng. C 2017, 71, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Sharma, M.C. Spectrophotometric and Atomic Absorption Spectrometric Determination and Validation of Azathioprine in API and Pharmaceutical Dosage Form. J. Optoelectron. Biomed. Mater. 2010, 2, 213–216. [Google Scholar]
- Wang, J.; Zhao, P.; Han, S. Direct Determination of Azathioprine in Human Fluids and Pharmaceutical Formulation Using Flow Injection Chemiluminescence Analysis. J. Chin. Chem. Soc. 2012, 59, 239–244. [Google Scholar] [CrossRef]
- Hatami, Z.; Jalali, F. Voltammetric determination of immunosuppressive agent, azathioprine, by using a graphene-chitosan modified-glassy carbon electrode. Russ. J. Electrochem. 2015, 51, 70–76. [Google Scholar] [CrossRef]
- Vais, R.D.; Sattarahmady, N.; Karimian, K.; Heli, H. Green electrodeposition of gold hierarchical dendrites of pyramidal nanoparticles and determination of azathioprine. Sens. Actuators B Chem. 2015, 215, 113–118. [Google Scholar] [CrossRef]
- Asadian, E.; Zad, A.I.; Shahrokhian, S. Voltammetric studies of Azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles. Mater. Sci. Eng. C 2016, 58, 1098–1104. [Google Scholar] [CrossRef]
- Satishchandra, M.H.; Singhvi, I.; Raj, H. Development and validation of RP-HPLC method for azathioprine in pharmaceutical dosage form. Eur. J. Pharm. Med. Res. 2017, 4, 500–503. [Google Scholar]
- Fu, W.L.; Zhen, S.J.; Huang, C.Z. Controllable preparation of graphene oxide/metal nanoparticle hybrids as surface-enhanced Raman scattering substrates for 6-mercaptopurine detection. RSC Adv. 2014, 4, 16327–16332. [Google Scholar] [CrossRef]
- Keyvanfard, M.; Khosravi, V.; Karimi-Maleh, H.; Alizad, K.; Rezaei, B. Voltammetric determination of 6-mercaptopurine using a multiwall carbon nanotubes paste electrode in the presence of isoprenaline as a mediator. J. Mol. Liq. 2013, 177, 182–189. [Google Scholar] [CrossRef]
- Somasekhar, V. Optimization and validation of an RP-HPLC method for the estimation of 6-mercaptopurine in bulk and pharmaceutical formulations. Braz. J. Pharm. Sci. 2014, 50, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Amjadi, M.; Farzampour, L. Selective turn-on fluorescence assay of 6-thioguanine by using harmine-modified silver nanoparticles. Luminescence 2014, 29, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Smarzewska, S.; Pokora, J.; Leniart, A.; Festinger, N.; Ciesielski, W. Carbon Paste Electrodes Modified with Graphene Oxides—Comparative Electrochemical Studies of Thioguanine. Electroanalysis 2016, 28, 1562–1569. [Google Scholar] [CrossRef]
- Zakrzewski, R. Development and validation of a reversed-phase HPLC method with post-column iodine-azide reaction for the determination of thioguanine. J. Anal. Chem. 2009, 64, 1235–1241. [Google Scholar] [CrossRef]
- Hemmateenejad, B.; Shakerizadeh-Shirazi, F.; Samari, F. BSA-modified gold nanoclusters for sensing of folic acid. Sens. Actuators B Chem. 2014, 199, 42–46. [Google Scholar] [CrossRef]
- Matias, R.; Ribeiro, P.R.S.; Sarraguça, M.C.; Lopes, J.A. A UV spectrophotometric method for the determination of folic acid in pharmaceutical tablets and dissolution tests. Anal. Methods 2014, 6, 3065–3071. [Google Scholar] [CrossRef]
- Khaleghi, F.; Irai, A.E.; Sadeghi, R.; Gupta, V.K.; Wen, Y. A Fast Strategy for Determination of Vitamin B9 in Food and Pharmaceutical Samples Using an Ionic Liquid-Modified Nanostructure Voltammetric Sensor. Sensors 2016, 16, 747. [Google Scholar] [CrossRef]
- Bandžuchová, L.; Selesovska, R.; Navratil, T.; Chylkova, J. Electrochemical behavior of folic acid on mercury meniscus modified silver solid amalgam electrode. Electrochim. Acta 2011, 56, 2411–2419. [Google Scholar] [CrossRef]
- Cinková, K.; Švorc, Ľ.; Šatkovská, P.; Vojs, M.; Michniak, P.; Marton, M. Simple and Rapid Quantification of Folic Acid in Pharmaceutical Tablets using a Cathodically Pretreated Highly Boron-doped Polycrystalline Diamond Electrode. Anal. Lett. 2016, 49, 107–121. [Google Scholar] [CrossRef]
- Melfi, M.T.; Nardiello, D.; Cicco, N.; Candido, V.; Centonze, D. Simultaneous determination of water- and fat-soluble vitamins, lycopene and beta-carotene in tomato samples and pharmaceutical formulations: Double injection single run by reverse-phase liquid chromatography with UV detection. J. Food Compos. Anal. 2018, 70, 9–17. [Google Scholar] [CrossRef]
- Goldschmidt, R.J.; Wolf, W.R. Simultaneous determination of water-soluble vitamins in SRM 1849 Infant/Adult Nutritional Formula powder by liquid chromatography-isotope dilution mass spectrometry. Anal. Bioanal. Chem. 2010, 397, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Sillero, I.; Cárdenas, S.; Valcárcel, M. Determination of water-soluble vitamins in infant milk and dietary supplement using a liquid chromatography on-line coupled to a corona-charged aerosol detector. J. Chromatogr. A 2013, 1313, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Deconinck, E.; Crevits, S.; Baten, P.; Courselle, P.; De Beer, J. A validated ultra high pressure liquid chromatographic method for qualification and quantification of folic acid in pharmaceutical preparations. J. Pharm. Biomed. Anal. 2011, 54, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Raoof, J.-B.; Hosseinzadeh, R. Electroanalysis and simultaneous determination of 6-thioguanine in the presence of uric acid and folic acid using a modified carbon nanotube paste electrode. Anal. Sci. 2011, 27, 991. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rojas, F.; Del Valle, M.A.; Isaacs, M.; Ramírez, G.; Armijo, F. Electrochemical Behaviour Study and Determination of Guanine, 6-Thioguanine, Acyclovir and Gancyclovir on Fluorine-doped SnO2 Electrode. Application in Pharmaceutical Preparations. Electroanalysis 2017, 29, 2888–2895. [Google Scholar] [CrossRef]
- Kaur, B.; Srivastava, R. Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline–zeolite organic–inorganic hybrid materials. Sens. Actuators B Chem. 2015, 211, 476–488. [Google Scholar] [CrossRef]
- Moghaddam, H.M.; Beitollahi, H.; Tajik, S.; Soltani, H. Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid. Electroanalysis 2015, 27, 2620–2628. [Google Scholar] [CrossRef]
- Jogi, K.; Rao, M.B.; Raju, R.R. Development and Validation of Stability Indicating RP-HPLC Method for the Estimation of Methotrexate and Folic Acid in Bulk and Tablet Dosage Form. Int. J. Eng. Technol. Sci. Res. 2016, 3, 45–53. [Google Scholar]
- Maráková, K.; Piešťanský, J.; Mikuš, P. Determination of Drugs for Crohn’s Disease Treatment in Pharmaceuticals by Capillary Electrophoresis Hyphenated with Tandem Mass Spectrometry. Chromatographia 2017, 80, 537–546. [Google Scholar] [CrossRef]
- Czyrski, A.; Kupczyk, B. The Determination of Partition Coefficient of 6-Mercaptopurine Derivatives by Thin Layer Chromatography. J. Chem. 2013, 2013, 419194. [Google Scholar] [CrossRef]
- Kowalska, A.; Pluta, K. RP TLC assay of the lipophilicity of new azathioprine analogs. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 1686–1696. [Google Scholar] [CrossRef]
- Chrzanowska, M.; Kuehn, M.; Hermann, T.; Neubert, R.H.H. Biopharmaceutical characterization of some synthetic purine drugs. Die Pharm. 2003, 58, 504–506. [Google Scholar]
- Lasić, K.; Bokulić, A.; Milić, A.; Nigović, B.; Mornar, A. Lipophilicity and bio-mimetic properties determination of phytoestrogens using ultra-high-performance liquid chromatography. Biomed. Chromatogr. 2019, 33, e4551. [Google Scholar] [CrossRef] [PubMed]
- Tsopelas, F.; Vallianatou, T.; Tsantili-Kakoulidou, A. The potential of immobilized artificial membrane chromatography to predict human oral absorption. Eur. J. Pharm. Sci. 2016, 81, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Chrysanthakopoulos, M.; Vallianatou, T.; Giaginis, C.; Tsantili-Kakoulidou, A. Investigation of the retention behavior of structurally diverse drugs on alpha1 acid glycoprotein column: Insight on the molecular factors involved and correlation with protein binding data. Eur. J. Pharm. Sci. 2014, 60, 24–31. [Google Scholar] [CrossRef]
- Kamble, S.; Loadman, P.; Abraham, M.H.; Liu, X. Structural properties governing drug-plasma protein binding determined by high-performance liquid chromatography method. J. Pharm. Biomed. Anal. 2018, 149, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Mornar, A.; Damić, M.; Nigović, B. Pharmacokinetic Parameters of Statin Drugs Characterized by Reversed Phase High-Performance Liquid Chromatography. Anal. Lett. 2011, 44, 1009–1020. [Google Scholar] [CrossRef]
- Russo, G.; Grumetto, L.; Barbato, F.; Vistoli, G.; Pedretti, A. Prediction and mechanism elucidation of analyte retention on phospholipid stationary phases (IAM-HPLC) by in silico calculated physico-chemical descriptors. Eur. J. Pharm. Sci. 2017, 99, 173–184. [Google Scholar] [CrossRef]
- Blake, C.J. Analytical procedures for water-soluble vitamins in foods and dietary supplements: A review. Anal. Bioanal. Chem. 2007, 389, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Delchier, N.; Ringling, C.; Cuvelier, M.-E.; Courtois, F.; Rychlik, M.; Renard, C.M. Thermal degradation of folates under varying oxygen conditions. Food Chem. 2014, 165, 85–91. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. ICH Topic Q 2 (R1): Validation of Analytical Procedures: Text and Methodology; European Medicines Agency: London, UK, 2005. [Google Scholar]
- United States Pharmacopoeial Convention. United States Pharmacopoeia 42—National Formulary 37; United States Pharmacopoeial Convention: Rockville, MD, USA, 2018. [Google Scholar]
- Medicines and Healthcare Products Regulatory Agency. British Pharmacopoeia 2019; Medicines and Healthcare Products Regulatory Agency: London, UK, 2019.
Sample Availability: Samples of the proposed FDCs are available from the authors. |
Analyte | RMw1 | log kw C18 2 | log kw IAM 3 | PPBHSA 4 (%) | PPBAGP 5 (%) |
---|---|---|---|---|---|
6-thioguanine | 0.21 | 0.32 | 0.03 | 24.11 | 45.96 |
6-mercaptopurine | 0.23 | 0.45 | −0.19 | 20.08 | 22.15 |
Folic acid | 0.57 | 0.99 | −0.26 | 69.40 | 3.45 |
Azathioprine | 1.41 | 1.34 | 0.68 | 49.22 | 75.96 |
Parameter | Program | 6-thioguanine | 6-mercaptopurine | Folic Acid | Azathioprine |
---|---|---|---|---|---|
partition coefficient | ACDLabs | −0.12 | −0.18 | −2.48 | 0.67 |
ADMETLab | 0.60 | 1.02 | −0.05 | 1.15 | |
ALOGPS | −0.36 | −0.13 | −0.04 | 0.84 | |
ChemExper | −0.02 | 0.43 | −1.43 | 0.42 | |
Chemicalize | −0.35 | −0.12 | −0.69 | 1.17 | |
Mcule | 1.18 | 1.02 | 1.00 | 1.67 | |
MlogP | −1.31 | −1.16 | −0.62 | −0.26 | |
Molinspiration | −0.58 | −0.39 | −2.37 | 0.50 | |
Molsoft | −0.36 | 0.23 | −0.95 | 0.10 | |
pkCSM | 0.60 | 1.02 | −0.04 | 1.15 | |
PreADMET | −0.35 | −0.47 | 0.65 | 0.67 | |
Silicos-it | 2.05 | 2.78 | 0.24 | −1.11 | |
SwissADME | 0.28 | 0.62 | −0.42 | 0.04 | |
XlogP | −0.07 | 0.70 | −1.08 | 0.10 | |
human intestinal absorption (%) | ADMETLab | 76.7 | 81.3 | 39.8 | 78.2 |
pkCSM | 91.0 | 91.0 | 2.3 | 78.6 | |
PreADMET | 83.1 | 87.8 | 23.2 | 75.5 | |
Caco-2 permeability [log(cm × 10−6/s)] | ADMETLab | 0.82 | 1.53 | −0.33 | 1.41 |
admetSAR | 0.49 | 0.62 | −1.07 | 0.11 | |
pkCSM | 0.17 | 1.14 | −0.98 | 0.62 | |
PreADMET | 0.29 | 0.28 | 0.31 | −1.38 | |
plasma protein binding (%) | ADMETLab | 27.0 | 24.2 | 67.9 | 35.8 |
pkCSM | 32.2 | 28.1 | 63.9 | 60.4 |
Analyte | Parameter (Mean Value ± Standard Deviation), n = 7 | ||||||
---|---|---|---|---|---|---|---|
tR1 | RtR2 | Rs3 | K4 | N 5 | TF 6 | A 7 | |
6-thioguanine | 3.29 ± 0.01 | 0.635 ± 0.001 | / | 1.06 ± 0.01 | 8716 ± 198 | 1.38 ± 0.02 | 2871.6 ± 27.8 |
6-mercaptopurine | 3.96 ± 0.01 | 0.761 ± 0.001 | 5.69 ± 0.05 | 1.48 ± 0.01 | 28462 ± 330 | 1.35 ± 0.02 | 3522.4 ± 35.5 |
6-methylthioguanine | 5.20 ± 0.01 | / | 13.57 ± 0.31 | 2.25 ± 0.01 | 53336 ± 1169 | 1.34 ± 0.01 | 388.2 ± 2.8 |
Folic acid | 5.49 ± 0.01 | 1.055 ± 0.001 | 3.37 ± 0.03 | 2.43 ± 0.01 | 75297 ± 1956 | 1.28 ± 0.01 | 141.8 ± 1.7 |
Azathioprine | 6.63 ± 0.02 | 1.275 ± 0.001 | 14.22 ± 0.07 | 3.14 ± 0.01 | 110071 ± 2807 | 1.34 ± 0.02 | 1578.5 ± 16.8 |
Analyte | Linearity Range (mg/L) | Equation | r1 | sE2 | LOD (mg/L) | LOQ (mg/L) |
---|---|---|---|---|---|---|
6-thioguanine | 5–80 | y = 0.251 x − 0.132 | 0.9996 | 0.124 | 0.1 | 0.2 |
6-mercaptopurine | 5–100 | y = 0.230 x − 0.034 | 0.9997 | 0.140 | 0.1 | 0.2 |
Folic acid | 0.2–20 | y = 0.081 x − 0.007 | 0.9999 | 0.013 | 0.1 | 0.2 |
Azathioprine | 5–100 | y = 0.102 x + 0.016 | 0.9998 | 0.048 | 0.1 | 0.2 |
Analyte | Precision Relative Standard Deviation (RSD) (%) | Accuracy Recovery ± RSD (%) | |||
---|---|---|---|---|---|
Intra-Day Precision (n = 6) | Inter-Day Precision (n = 9) | Low | Medium | High | |
6-thioguanine | 0.73 | 0.75 | 99.49 ± 0.80 | 100.42 ± 1.66 | 98.79 ± 0.68 |
6-mercaptopurine | 0.81 | 0.79 | 100.35 ± 1.74 | 100.79 ± 0.69 | 99.01 ± 0.76 |
Folic acid | 1.04 | 1.11 | 99.78 ± 0.81 | 97.57 ± 0.37 | 100.25 ± 0.87 |
Azathioprine | 0.40 | 0.64 | 100.38 ± 0.86 | 100.38 ± 1.19 | 99.55 ± 0.58 |
Commercial Formulation | Manufacturer | Active Substance | Amount Labeled (mg) | Amount Found (mg) | Detected/Labeled (%) | RSD (%) |
---|---|---|---|---|---|---|
Thiosix® | Teva Nederland B.V, Haarlem, the Netherlands | 6-thioguanine | 10 | 10.44 | 104.42 | 2.90 |
Puri-Nethol® | Aspen, Dublin, Ireland | 6-mercaptopurine | 50 | 48.07 | 96.13 | 2.89 |
Folacin® | JGL, Rijeka, Croatia | folic acid | 5 | 4.99 | 99.95 | 3.31 |
Imuran® | Aspen, Dublin, Ireland | azathioprine | 50 | 51.63 | 103.26 | 2.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brusač, E.; Jeličić, M.-L.; Amidžić Klarić, D.; Nigović, B.; Turk, N.; Klarić, I.; Mornar, A. Pharmacokinetic Profiling and Simultaneous Determination of Thiopurine Immunosuppressants and Folic Acid by Chromatographic Methods. Molecules 2019, 24, 3469. https://doi.org/10.3390/molecules24193469
Brusač E, Jeličić M-L, Amidžić Klarić D, Nigović B, Turk N, Klarić I, Mornar A. Pharmacokinetic Profiling and Simultaneous Determination of Thiopurine Immunosuppressants and Folic Acid by Chromatographic Methods. Molecules. 2019; 24(19):3469. https://doi.org/10.3390/molecules24193469
Chicago/Turabian StyleBrusač, Edvin, Mario-Livio Jeličić, Daniela Amidžić Klarić, Biljana Nigović, Nikša Turk, Ilija Klarić, and Ana Mornar. 2019. "Pharmacokinetic Profiling and Simultaneous Determination of Thiopurine Immunosuppressants and Folic Acid by Chromatographic Methods" Molecules 24, no. 19: 3469. https://doi.org/10.3390/molecules24193469
APA StyleBrusač, E., Jeličić, M. -L., Amidžić Klarić, D., Nigović, B., Turk, N., Klarić, I., & Mornar, A. (2019). Pharmacokinetic Profiling and Simultaneous Determination of Thiopurine Immunosuppressants and Folic Acid by Chromatographic Methods. Molecules, 24(19), 3469. https://doi.org/10.3390/molecules24193469