Correlation between Quality and Geographical Origins of Cortex Periplocae, Based on the Qualitative and Quantitative Determination of Chemical Markers Combined with Chemical Pattern Recognition
Abstract
:1. Introduction
2. Results
2.1. UPLC-Q-TOF-MS/MS Analysis
2.2. HPLC-MS/MS Analysis
2.2.1. Method Validation
2.2.2. Determination of Nine Components
2.3. Qualitative Analysis Based on GC-MS
2.3.1. Optimization of GC-MS Conditions
2.3.2. Sample Analysis
2.4. Relative Content Analysis Based on GC-MS
3. Materials and Methods
3.1. Sample Collection
3.2. UPLC-Q-TOF-MS/MS Analysis
3.2.1. Chemicals and Apparatus
3.2.2. Sample Preparation and Measurement
3.2.3. Data Pre-Processing
3.3. HPLC-MS/MS Analysis
3.3.1. Chemicals and Apparatus
3.3.2. Sample Preparation and Measurement
3.4. GC-MS Analysis
3.4.1. Apparatus
3.4.2. Sample Preparation and Measurement
3.4.3. Data Pre-Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- State Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2015; p. 257. [Google Scholar]
- Li, L.; Zhao, L.M.; Dai, S.L.; Cui, W.X.; Lv, H.L.; Chen, L.; Shan, B.E. Periplocin Extracted from Cortex Periplocae Induced Apoptosis of Gastric Cancer Cells via the ERK1/2-EGR1 Pathway. Cell Physiol Biochem. 2016, 38, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Jiang, Y.H.; Shan, B.E. The immunoregulatory activity of Cortex Periplocae extract on the mice lymphocyts. Carcinogenesis Teratogenesis Mutagenesis 2010, 22, 292–294. [Google Scholar]
- Itokawa, H.; Xu, J.; Takeya, K. Studies on chemical constituents of antitumor fraction from Periploca sepium BGE. I. Chem. Pharm. Bull. 1987, 35, 4524–4529. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Junping, X.U.; Takeya, K. Studies on Chemical Constituents of Antitumor Fraction from Periploca sepium. V. Structures of New Pregnane Glycosides, Periplocosides J, K, F and O. Chem. Pharm. Bull. 1988, 36, 4441–4446. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, S.; Kawanishi, S.; Shoji, J.; Shibata, S. Constituents of Chinese crude drug "Wujiapi". I. Studies on the aglycones of steroidal glycosides of pei-wujiapi. Chem. Pharm. Bull. 1968, 16, 326. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Denmeade, S.; Carducci, M.A. HIF-1alpha and calcium signaling as targets for treatment of prostate cancer by cardiac glycosides. Curr. Cancer Drug Targets. 2009, 9, 881–887. [Google Scholar] [CrossRef]
- Zhu, L.X.; Xu, J.; Wang, R.J.; Li, H.X.; Tan, Y.Z.; Chen, H.B.; Dong, X.P.; Zhao, Z.Z. Correlation between Quality and Geographical Origins of Poria cocos Revealed by Qualitative Fingerprint Profiling and Quantitative Determination of Triterpenoid Acids. Molecules. 2018, 23, 2200. [Google Scholar] [CrossRef]
- Ianni, F.; Lisanti, A.; Marinozzi, M.; Camaioni, E.; Pucciarini, L.; Massoli, A.; Sardella, R.; Concezzi, L.; Natalini, B. Hydrophobic Amino Acid Content in Onions as Potential Fingerprints of Geographical Origin: The Case of Rossa da Inverno sel. Rojo Duro. Molecules 2018, 23, 1259. [Google Scholar] [CrossRef]
- Koch, W.; Kukula, K.W.; Komsta, Ł. Black Tea Samples Origin Discrimination Using Analytical Investigations of Secondary Metabolites, Antiradical Scavenging Activity and Chemometric Approach. Molecules. 2018, 23, 513. [Google Scholar] [CrossRef]
- Jiangsu New Medical College. Dictionary of Medicinal Plant; Shanghai Scientific and Technical: Shanghai, China, 1986; p. 1683. [Google Scholar]
- Wang, Q.; Xu, G.J. Atlas of Genuine Herbs: Three Northern Volumes; Fujian Science and Technology Press: Fuzhou, China, 2003; p. 122. [Google Scholar]
- LI, L.; E, X.H.; HE, Y.; Li, P.; Zhou, S.P. Quality assessment of Cortex Periplocae from different habitats by UPLC fingerprint and quantitative analysis. China J. Chin. Mater. Med. 2015, 40, 1529–1534. [Google Scholar]
- Li, D.Y.; Wang, T.T.; Chen, X.H.; Bi, K.S. Establishment of RP-HPLC fingerprint for quality assessment of Cortex Periplocae. J. Chin. Med. Mater. 2006, 29, 715–717. [Google Scholar]
- LI, R.X.; WU, F.; Zhang, J.Q.; Zhao, P.; Feng, Y. Quality assessment of Cortex Periplocae by HPLC fingerprint and UV quantitative analysis. China Med. Her. 2017, 14, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, Z.Q.; Zhang, L.H.; Ye, W.C.; Zhang, X.Q. Chemical constituents from root barks of Periploca sepium. China J. Chin. Mater. Med. 2007, 32, 1300. [Google Scholar]
- Liu, H.; Yang, H.; Sun, W.; Wang, M.; Guo, J.H.; Pan, G.X. Simultaneous determination of Periplocin and 4-methoxysalicylic aldehyde in Cortex Periplocae with HPLC. Tianjin J. Tradit. Chin. Med. 2006, 1, 64–66. [Google Scholar]
- Ren, X.L.; Liu, H.; Qi, A.D.; Wang, Y. Improving of simultaneous determination of periplocin and 4-methoxy salicylic aldehyde in Cortex Periplocae with HPLC method. Tianjin J. Tradit. Chin. Med. 2007, 24, 252. [Google Scholar]
- Tong, L.; Tan, X.J.; Lin, J.R.; Chen, X.H.; Bi, K.S. RP-HPLC determination of isovanillin, periplocin and 4-methoxy salicylaldehyde in root bark of Cortex Periplocae. Chin. J. Pharm. Anal. 2009, 29, 961. [Google Scholar]
- Guan, Y.L.; Cai, L.M.; Yang, R.Y. Study on the content change of the chlorogenic acid in water extract of Cortex Periplocae at the different times. Nor Horticul. 2011, 154, 177–178. [Google Scholar]
- Xu, S.; Jin, P.F.; Xu, W.F.; Wu, X.J.; Jiang, W.Q.; Kuang, Y.M.; Ma, J. Advances on Chinese herbal medicine Cortex Periplocae. Northwest. Pharm. J. 2017, 32, 118–121. [Google Scholar]
- Cao, X.X.; You, G.J.; Li, H.H.; Li, D.; Wang, M.; Ren, X.L. Comparative Investigation for Rotten Xylem (kuqin) and Strip Types (tiaoqin) of Scutellaria baicalensis Georgi Based on Fingerprinting and Chemical Pattern Recognition. Molecules 2019, 24, 2431. [Google Scholar] [CrossRef]
- Gong, D.D.; Hong, Y.L.; Sun, G.X.; Zhang, J. Novel strategy for quality consistency evaluation of Chinese medicine “YIQING” tablet that combines the simultaneous quantification and screening of ten bioactive constituents. J. Sep. Sci. 2017, 40, 3064–3073. [Google Scholar] [CrossRef]
- Yu, H.H.; Giao, X.Y. Identification of chemical components in capillary wormwood herb by UPLC-Q-TOF/MS. Cent. South. Pharm. 2019, 17, 656–661. [Google Scholar]
- Ramon, D.; Oscar, J.P.; Juan, V.S.; Félix, H. Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem. 2014, 157, 84–93. [Google Scholar]
- Zsuzsanna, H.; Judit, H.; Peter, F.; Imre, M.; Judit, M.; István, Z. Antiproliferative Activity of Artemisia asiatica Extract and Its Constituents on HumanTumor Cell Lines. Planta Med. 2014, 80, 1692–1697. [Google Scholar]
- Wang, X.J.; Deng, Y.H.; Zhang, L.P.; Zheng, G.H.; Chen, L.L.; Fang, Y. Identification and determination of phenolic acids and flavonoids in Artemisiae Argyi Folium by UPLC-DAD-MS. China J. Chin. Mater. Med. 2019, 44, 983–989. [Google Scholar]
- Chen, Y.J.; Yu, Y.; Gao, Y.; Bi, X.Y.; Kuang, H.X. Separation and Structural Identification of Phenolic Acids from Hydrangea Macrophylla Leaves. Chin. J. Inf. Tradit. Chin. Med. 2017, 34, 10–13. [Google Scholar] [CrossRef]
- Cheng, X.Y. Qualitative Analysis and in ivo Metabolic Profiling of Farfarae Flos by UHPLC-Q-TOF-MS Technologies and Study on Characteristic Fingerprints of Flos Genkwa and Wikstroemia Chamaedaphne. Master’s Thesis, Hebei Medical University, Shijiazhuang, China, 2018. [Google Scholar]
- Sun, N.N.; Zhang, K.J.; Geng, W.L.; Er, X.H.; Gao, W.; He, Y.; Li, P. Analysis of chemical constituents of 33 Jiashen Tablet extract by UPLC-Q-TOF-MS. Chin. Tradit. Herb. Drugs 2018, 49, 293–304. [Google Scholar]
- Qin, W.H.; Hua, L.; Guo, Y.L.; Wang, Y.H.; Ran, J.C.; Yang, Y. Differentiation of Different Parts of Cordyceps sinensis Based on UPLC-Q-TOF-MS Combined with Metabolomics Methods. Chin. J. Exp. Tradit. Med. Formulae. 2018, 24, 69–76. [Google Scholar]
- Janet, A.; Patrick, N.; Eugenie, K. Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchem. J. 2019, 149, 104034. [Google Scholar]
- Luo, J.; Zhao, L.J.; Bao, J.P.; Zhu, D.; Tan, J.H.; Yu, J.; Yin, S.W. Analysis of Chemical Compositions in Gentiana rhodantha by UPLC-Q-TOF-MS. Chin. J. Exp. Tradit. Med. Formulae. 2018, 24, 89–94. [Google Scholar]
- Chen, W.L. Based on Chromatography-Mass Spectrometry Technology Research Chemical Constituents of Cyclocarya Paliurus Leaf. Master’s Thesis, Nanchang University, Nanchang, China, 2017. [Google Scholar]
- Zou, Y.T.; Xu, J.D.; Long, F.; Zhang, Y.Q.; Li, S.L. Evaluation of chemical consistency of triterpene acids in ethanol extracts of Poria and acetic ether extracts thereof by UPLC-QTOF-MS/MS with full scan and mimic MRM mode. Acta Pharm Sin. 2019, 54, 130–137. [Google Scholar]
- Tong, L. Study on Chemical Components and Method of Quality Assessment of XiangJiaPi. Master’s Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2007. [Google Scholar]
Sample Availability: The Cortex Periplocae samples are available from the authors. |
Number | Ion Mode | Precursor Ion | Fragment Ion | Retention Time (min) | Loading Form | Possible Compound | Molecular Formula | Ref |
---|---|---|---|---|---|---|---|---|
1 | ESI(+) | 365.1045 | 85.0002 | 1.136 | [M + Na]+ | Melibiose | C12H22O11 | [24] |
2 | ESI(+) | 343.1361 | 163.0608 | 3.847 | [M + H]+ | Citrusin D | C16H22O8 | [25] |
3 | ESI(+) | 265.1420 | 247.1310, 211.1034, 183.1007, 173.0083 | 6.447 | [M + H]+ | Ridentin | C15H20O4 | [26] |
4 | ESI(+) | 153.0539 | 61.0601, 121.0209 | 8.726 | [M + H]+ | Isovanillin | C8H8O3 | * |
5 | ESI(+) | 193.0489 | 178.0268, 137.0578, 122.0957 | 9.497 | [M + H]+ | Scopoletin | C10H8O4 | * |
6 | ESI(+) | 517.1327 | 499.1221, 355.1088, 163.0389 | 10.808 | [M + H]+ | Isochlorogenic Acid B | C25H24O12 | [27] |
7 | ESI(+) | 339.1063 | 257.1124, 89.0595 | 11.367 | [M + Na]+ | Vanilloloside | C14H20O8 | [28] |
8 | ESI(+) | 391.2473 | 355.2254, 337.2148 | 12.084 | [M + H]+ | Periplogenin | C23H34O5 | * |
9 | ESI(+) | 391.2471 | 373.2366, 275.1125 | 12.164 | [M + H]+ | Tussilagone | C23H34O5 | [29] |
10 | ESI(+) | 169.0483 | 151.0381, 109.1011 | 12.231 | [M + H]+ | Isovanillic Acid | C8H8O4 | * |
11 | ESI(+) | 719.3596 | 391.2473, 373.2358, 355.2255, 337.2145 | 12.543 | [M + Na]+ | Periplocin | C36H56O13 | * |
12 | ESI(+) | 413.2287 | 391.2476, 373.2363, 355.2259, 337.2153 | 12.748 | [M + Na]+ | Periplogenin 1 | C23H34O5 | [30] |
13 | ESI(+) | 487.2996 | 339.1085 | 13.709 | [M + Na]+ | Periplocin N | C27H44O6 | [30] |
14 | ESI(+) | 557.3058 | 391.2457, 373.2364, 355.2243, 337.2136 | 13.965 | [M + Na]+ | Periplocymarin | C30H46O8 | * |
15 | ESI(+) | 327.1941 | 675.3627, 349.1768 | 14.322 | [M + H]+ | 12β-Hydroxyl progesterone-4,6,13-triene-3,20-diketone | C21H26O3 | [30] |
16 | ESI(+) | 279.2317 | 261.2201, 121.0509 | 19.132 | [M + H]+ | Linolenic Acid | C18H30O2 | [31] |
17 | ESI(+) | 457.3639 | 439.3556, 249.1764 | 24.179 | [M + H]+ | Oleanolic Acid | C30H48O3 | * |
18 | ESI(−) | 377.0893 | 341.1124, 179.0589, 683.2303 | 1.012 | [M + Cl]− | Saccharose | C12H22O11 | [30] |
19 | ESI(−) | 191.0571 | 161.0244 | 5.894 | [M−H]− | Quinic Acid | C7H12O6 | [32] |
20 | ESI(−) | 353.0913 | 191.0586 | 5.896 | [M − H]− | Chlorogenic Acid | C16H18O9 | * |
21 | ESI(−) | 355.1069 | 175.0513, 149. 0372 | 6.726 | [M − H]− | Gentiopicrin | C16H20O9 | [33] |
22 | ESI(−) | 581.2290 | 419.1728 | 7.207 | [M − H]− | 5,5’-Dimethoxylariciresil 4-O-glucoside | C28H38O13 | [30] |
23 | ESI(−) | 687.3643 | 641.3563 | 11.375 | [M+COOH]− | Periplocin C | C33H54O12 | [30] |
24 | ESI(−) | 167.033 | 108.0202, 123.0434 | 11.729 | [M − H]− | 4-Methoxysalicylic acid | C8H8O4 | [30] |
25 | ESI(−) | 487.3468 | 96.9627 | 15.563 | [M − H]− | Arjunolic Acid | C30H47O5 | [34] |
26 | ESI(−) | 485.3311 | 449.2348, 327.2205 | 15.639 | [M − H]− | 24-hydroxyglycyrrhetic acid | C30H46O5 | [35] |
27 | ESI(−) | 455.3566 | 325.1872, 186.1062 | 22.347 | [M − H]− | Ursolic Acid | C30H48O3 | * |
Compound | Linear Equation | r | Linearity Range | LLOD | LLOQ |
---|---|---|---|---|---|
(ng mL−1) | (ng mL−1) | (ng mL−1) | |||
isovanillin | y = 75.125x + 8936.830 | 0.9997 | 25–10,000 | 2 | 5 |
isovanillic acid | y = 5.177x + 92.148 | 0.9998 | 5–2000 | 1 | 2.5 |
scopoletin | y = 86.980x + 6320.950 | 0.9996 | 25–10,000 | 0.5 | 1 |
chlorogenic acid | y = 36.114x + 2307.730 | 0.9995 | 25–10,000 | 2 | 5 |
periplogenin | y = 70.338x + 3893.889 | 0.9997 | 30–12000 | 0.5 | 1 |
oleanolic acid | y = 14.851x + 5409.933 | 0.9990 | 25–10,000 | 2 | 5 |
ursolic acid | y = 18.160x + 2493.427 | 0.9991 | 12.5–5000 | 2 | 5 |
periplocymarin | y = 23.597x + 951.945 | 0.9998 | 25–10,000 | 0.1 | 0.3 |
periplocin | y = 141.294x + 3372.552 | 0.9996 | 25–10,000 | 5 | 10 |
Compound | Precision (RSD, %) | Repeatability (RSD, %) | Stability (RSD, %) | Sample Recovery | ||
---|---|---|---|---|---|---|
Intra-Day | Inter-Day | Average Recovery Rate (%) | RSD (%) | |||
isovanillin | 0.4 | 4.0 | 1.2 | 1.8 | 96.5 | 4.3 |
isovanillic acid | 2.4 | 1.7 | 2.8 | 2.9 | 99.6 | 3.1 |
scopoletin | 1.0 | 1.5 | 1.4 | 0.8 | 101.4 | 2.0 |
chlorogenic acid | 2.1 | 1.9 | 2.0 | 3.6 | 100.9 | 4.1 |
periplogenin | 0.4 | 0.3 | 3.1 | 3.2 | 89.9 | 2.8 |
oleanolic acid | 2.0 | 5.3 | 1.2 | 4.4 | 105.9 | 2.3 |
ursolic acid | 0.7 | 4.5 | 4.2 | 4.9 | 89.4 | 3.7 |
periplocymarin | 1.3 | 2.3 | 1.7 | 2.3 | 99.9 | 1.5 |
periplocin | 2.7 | 3.9 | 1.2 | 3.5 | 98.0 | 0.9 |
Sample | Isovanillin | Isovanillic Acid | Scopoletin | Chlorogenic Acid | Periplogenin | Oleanolic Acid | Ursolic Acid | Periplocymarin | Periplocin |
---|---|---|---|---|---|---|---|---|---|
S1 | 26.59 | - | 8.81 | 74.41 | 2.46 | 16.91 | 4.86 | 2.22 | 9.08 |
S2 | 62.53 | 1.52 | 12.42 | 41.38 | 2.13 | 9.47 | 2.15 | 3.66 | 19.60 |
S3 | 17.45 | - | 2.50 | 43.41 | 1.28 | 0.53 | 1.38 | 0.54 | 7.36 |
S4 | 46.01 | 1.54 | 6.53 | 45.83 | 8.39 | 2.08 | 0.30 | 5.95 | 30.57 |
S5 | 31.12 | - | 4.14 | 52.19 | 3.42 | 0.67 | 0.17 | 0.89 | 10.29 |
S6 | 37.63 | - | 25.64 | 69.85 | 5.69 | 27.95 | 7.03 | 2.62 | 18.32 |
S7 | 26.34 | - | 6.24 | 46.48 | 4.98 | 26.47 | 7.13 | 1.14 | 10.15 |
S8 | 31.56 | 19.40 | 19.97 | 43.15 | 0.67 | 23.29 | 13.51 | 0.74 | 1.27 |
S9 | 46.75 | 0.94 | 30.75 | 37.79 | 5.16 | 31.65 | 14.95 | 7.65 | 10.75 |
S10 | 37.70 | - | 14.79 | 44.18 | 1.54 | 11.11 | 6.21 | 0.58 | 10.15 |
S11 | 99.07 | - | 36.34 | 27.86 | 2.19 | 29.42 | 13.89 | 2.50 | 6.48 |
S12 | 17.79 | 0.45 | 3.22 | 49.68 | 21.57 | 7.35 | 1.34 | 4.63 | 31.78 |
S13 | 17.44 | - | 1.13 | 50.57 | 21.17 | 0.14 | 0.21 | 3.75 | 43.81 |
S14 | 25.37 | 2.04 | 31.65 | 13.41 | 96.60 | 49.85 | 22.62 | 40.04 | 31.57 |
NO. | Retention Time (min) | Compound | Molecular Mass | Molecular Formula | Retention Index |
---|---|---|---|---|---|
1 | 3.755 | 6-Methyl-2-heptanone | 128.212 | C8H16O | 888 |
2 | 3.79 | 4-Hydroxynicotinic acid | 139.109 | C6H5NO3 | 1364 |
3 | 3.9 | 3, 4-Dimethyl-2-cyclopenten-1-one | 110.154 | C7H10O | 904 |
4 | 4.89 | 2-Methylpiperazine | 100.162 | C5H12N2 | 1072 |
5 | 4.95 | Hexanal | 100.159 | C6H12O | 806 |
6 | 5.61 | oct-3-yn-2-one | 124.180 | C8H12O | 970 |
7 | 6.455 | 2-Ethyl-4-methyl-1-pentanol | 130.228 | C8H18O | 931 |
8 | 7.49 | trans cis-1,2,4-trimethy clohexane | 126.239 | C9H18 | 903 |
9 | 8 | 2,3-Dimethylphenol | 122.164 | C8H10O | 1127 |
10 | 8.035 | 2,7-dimethyloxepine | 122.164 | C8H10O | 954 |
11 | 8.67 | (±)-1-phenylethanol | 122.164 | C8H10O | 1055 |
12 | 10.045 | 2-Amylfuran | 138.207 | C9H14O | 1040 |
13 | 10.445 | 4-methylcyclohexanol acetate | 156.222 | C9H16O2 | 1108 |
14 | 13.475 | 2-ethyl-2-hexenal | 126.196 | C8H14O | 990 |
15 | 16.825 | Tetrahydrofurfurylamine | 101.147 | C5H11NO | 893 |
16 | 17.06 | Phenylacetaldehyde | 120.148 | C8H8O | 1081 |
17 | 19.755 | 2,6,6-trimethylcyclohepta-2,4-dien-1-one | 150.218 | C10H14O | 1199 |
18 | 22.67 | phenylthiocyanate | 135.186 | C7H5NS | 1290 |
19 | 24.73 | 1,3-Dimethoxy-5-methylbenzene | 152.190 | C9H12O2 | 1172 |
20 | 25.12 | Safrole | 162.185 | C10H10O2 | 1345 |
21 | 26.075 | 4-Hydroxy-3-methoxystyrene | 150.174 | C9H10O2 | 1293 |
22 | 27.04 | 4-methoxysalicylaldehyde | 152.150 | C8H8O3 | 1392 |
NO. | Compound | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2,3-Dimethylphenol | 17.84 | 14.3 | 24.81 | 16.63 | 15.05 | 26.09 | 23.11 | 11.76 | 10.08 | 10.79 | 15.14 | - | 18.08 | 37.52 |
2 | 2-Amylfuran | 2.02 | 2.13 | 2.22 | 3.43 | 2.19 | 3.48 | 2.65 | 8.1 | 8.48 | 7.6 | 1.62 | - | 4.08 | 10.06 |
3 | 2-ethyl-2-hexenal | - | 0.37 | - | 0.29 | - | 0.75 | 0.21 | 0.3 | 0.96 | 1.17 | 1.31 | 1.28 | 0.24 | 0.63 |
4 | 2, 6, 6-trimethyl-cyclohepta-2, 4-dien-1-one | 0.58 | 1.78 | 1.13 | 2.35 | 1.55 | 1.29 | 0.94 | 1.18 | 2.05 | 0.18 | 0.39 | 0.59 | 1.55 | - |
5 | 1, 3-Dimethoxy-5-methylbenzene | 0.29 | 0.99 | 0.29 | 1.29 | 1.02 | 1.04 | 0.59 | 0.73 | 1.31 | 0.03 | 0.21 | 0.33 | 0.82 | 0.02 |
6 | Safrole | 0.63 | 2.63 | 0.78 | 3.13 | 2.08 | 2.83 | 1.43 | 1.75 | 2.72 | 0.11 | 0.5 | 0.71 | 1.7 | 0.71 |
7 | 4-methoxysalicylaldehyde | 51.2 | 44.14 | 28.77 | 34.58 | 51.2 | 30.72 | 26.03 | 35.4 | 21.42 | 32.25 | 54.6 | 28.6 | 31.93 | 22.53 |
Sample | Origin | Harvest Time | ||
---|---|---|---|---|
S1 | Shanxi | Changzhi City | Lucheng | 20160422 |
S2 | Xinzhou City | Fanzhi | 20160425 | |
S3 | Xinzhou City | Yuanping | 20160424 | |
S4 | Xinzhou City | Ningwu | 20160424 | |
S5 | Jinzhong City | Yuci | 20160430 | |
S6 | Datong City | Lingqiu | 20160426 | |
S7 | Yangquan City | 20160422 | ||
S8 | Shandong | Linyi City | Feixian | 20160416 |
S9 | Taian City | 20160417 | ||
S10 | Henan | Nanyang City | 20160413 | |
S11 | Jiaozuo City | 20160415 | ||
S12 | Hebei | Zhangjiakou CIity | Yuxian | 20160501 |
S13 | Zhangjiakou CIity | Xuanhua | 20160430 | |
S14 | Tianjin | Jixian | 20160509 |
Compound | Ion Mode | Precursor Ion (m/z) | Product Ion (m/z) | Fragmentor (V) | Collision Energy (V) |
---|---|---|---|---|---|
isovanillin | Positive | 153.0 | 65.1 | 105 | 23 |
isovanillic acid | Positive | 169.0 | 65.0 | 115 | 26 |
scopoletin | Positive | 193.0 | 133.0 | 110 | 20 |
periplogenin | Positive | 391.3 | 337.2 | 135 | 10 |
periplocymarin | Positive | 535.3 | 113.1 | 135 | 20 |
periplocin | Positive | 719.4 | 719.4 | 135 | 0 |
chlorogenic acid | Negative | 353.0 | 191.1 | 90 | 10 |
oleanolic acid | Negative | 455.2 | 455.2 | 145 | 0 |
ursolic acid | Negative | 455.2 | 455.2 | 145 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Jia, X.; Huang, X.; Wang, W.; Yao, G.; Chang, Y.; Ouyang, H.; Li, T.; He, J. Correlation between Quality and Geographical Origins of Cortex Periplocae, Based on the Qualitative and Quantitative Determination of Chemical Markers Combined with Chemical Pattern Recognition. Molecules 2019, 24, 3621. https://doi.org/10.3390/molecules24193621
Gao M, Jia X, Huang X, Wang W, Yao G, Chang Y, Ouyang H, Li T, He J. Correlation between Quality and Geographical Origins of Cortex Periplocae, Based on the Qualitative and Quantitative Determination of Chemical Markers Combined with Chemical Pattern Recognition. Molecules. 2019; 24(19):3621. https://doi.org/10.3390/molecules24193621
Chicago/Turabian StyleGao, Mengyuan, Xiaohua Jia, Xuhua Huang, Wei Wang, Guangzhe Yao, Yanxu Chang, Huizi Ouyang, Tianxiang Li, and Jun He. 2019. "Correlation between Quality and Geographical Origins of Cortex Periplocae, Based on the Qualitative and Quantitative Determination of Chemical Markers Combined with Chemical Pattern Recognition" Molecules 24, no. 19: 3621. https://doi.org/10.3390/molecules24193621
APA StyleGao, M., Jia, X., Huang, X., Wang, W., Yao, G., Chang, Y., Ouyang, H., Li, T., & He, J. (2019). Correlation between Quality and Geographical Origins of Cortex Periplocae, Based on the Qualitative and Quantitative Determination of Chemical Markers Combined with Chemical Pattern Recognition. Molecules, 24(19), 3621. https://doi.org/10.3390/molecules24193621