Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Coatings
2.2. Effect of Coatings on Pitaya (S. pruinosus) Postharvest Quality Endurance
2.2.1. Weight Loss (WL)
2.2.2. Determination of Contact Angle on the Epicarp of Pitayas
2.2.3. Determination of pH, Titratable Acidity (TA), and Total Soluble Solids (TSS)
2.2.4. Effect of Coatings on Color, Betalains, Phenolic Compounds, and Ascorbic Acid in Pitaya
2.2.5. Pulp Firmness and Sensorial Analysis
2.3. Fungal and Mesophilic Aerobic Bacterial Contamination of Samples Fruits’ Control and Coated Samples during Storage
2.4. Release of Neem from Coatings
2.5. Changes in Morphology of the Control and Coated Pitaya Epicarps by SEM
3. Materials and Methods
3.1. Materials
3.2. Preparation and Characterization of CH and CHH
3.3. Characterization of Neem: Determination of Azadirachtin Concentration and Radical Scavenging Activity
3.4. Emulsions Formulation and Characterization of Chitosan-Based Coatings with Neem Oil
3.5. Droplet Size and Zeta Potential Determinations
3.6. Application of Coatings on Pitaya Fruit
3.7. Fruit Quality Evaluation
3.8. Determination of Total Betalains, Phenolic Compounds, and Ascorbic Acid (ASA) in the Flesh of Pitaya
3.9. Sensory Evaluation of Pitaya Treated with Chitosan-Based Coatings
3.10. Determination of Contact Angle on Coated Pitaya
3.11. Enumeration of Fungi and Mesophilic Aerobic Bacteria of Epicarps of Coated Pitaya
3.12. Azadirachtin of N Release from the Emulsions in Stored Experimental Units
3.13. Scanning Electron (SE) Microscopy Analysis of Pitaya Epicarp
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Armella, M.A.; Yánez-López, L.; Soriano, S.J.; Ramírez, R.G. Phenology, postharvest, physiology and marketing of pitaya (Stenocereus griseus, L.) as a sustainable resource. Acta Hortic. 2003, 598, 251–254. [Google Scholar] [CrossRef]
- Parra, F.; Blancas, J.J.; Casas, A. Landscape management and domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley: Human-guided selection and gene flow. J. Ethnobiol. Ethnomed. 2012, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Chuck-Hernández, C.; Parra-Saldívar, R.; Sandate-Flores, L. Pitaya (Stenocereus spp.). Encycl. Food Health 2016. [Google Scholar] [CrossRef]
- García-Cruz, L.; Valle-Guadarrama, S.; Salinas-Moreno, Y.; Luna-Morales, C. Postharvest quality, soluble phenols, betalains content, and antioxidant activity of Stenocereus pruinosus and Stenocereus stellatus fruit. Postharvest Biol. Technol. 2016, 111, 69–76. [Google Scholar] [CrossRef]
- Moreno, D.A.; García-Viguera, C.; Gil, J.I.; Gil-Izquierdo, A. Betalains in the era of global agri-food science, technology and nutritional health. Phytochem. Rev. 2008, 7, 261–280. [Google Scholar] [CrossRef]
- Beltrán-Orozco, M.C.; Oliva-Coba, T.G.; Gallardo-Velázquez, T.; Osorio-Revilla, G. Ascorbic acid, phenolic content and antioxidant capacity of red, cherry, yellow and White type of Pitaya cactus fruit (Stenocereus stellatus Riccobono). Agrociencia 2009, 43, 153–162. [Google Scholar]
- Bravo-Hollis, H.; Sánchez-Mejorada, H. Las cactáceas de México, 3rd ed.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1991. [Google Scholar]
- García-Cruz, L.; Valle-Guadarrama, S.; Salinas-Moreno, Y.; Joaquín-Cruz, E. Physical, Chemical, and Antioxidant Activity Characterization of Pitaya (Stenocereus pruinosus) Fruits. Plant Foods Hum. Nutr. 2013, 68, 403–410. [Google Scholar] [CrossRef]
- Le Bellec, F.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A New Fruit Crop, a Market with a Future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef]
- Hernandez-Valencia, C.G.; Shirai, K.; Mejía, P.; Blanco, S.; Román, A.; Yáñez, L.; Escalona, H. Post-harvest Preservation of Cactus Fruits Produced in Semidesertic Areas of Oaxaca by Biopolymer Coatings. Int. J. Interdiscip. Soc. Sci. Annu. Rev. 2016, 11, 15–26. [Google Scholar] [CrossRef]
- Nerd, A.; Gutman, F.; Mizrahi, Y. Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol. Technol. 1999, 17, 39–45. [Google Scholar] [CrossRef]
- Sandoval, L.N.; López, M.; Montes-Díaz, E.; Espadín, A.; Tecante, A.; Gimeno, M.; Shirai, K. Inhibition of Listeria monocytogenes in Fresh Cheese using Chitosan-grafted Lactic Acid Packaging. Molecules 2016, 21, 469. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Velasco, C.E.; Guerrero-Beltrán, J.A. Postharvest quality of peeled prickly pear fruit treated with acetic acid and chitosan. Postharvest Biol. Technol. 2014, 92, 139–145. [Google Scholar] [CrossRef]
- Torres, E.; Marín, V.; Aburto, J.; Beltrán, H.; Shirai, K.; Villanueva, S.; Sandoval, G. Enzymatic modification of chitosan with quercetin and its application as antioxidant edible films. Appl. Biochem. Microbiol. 2012, 48, 149–156. [Google Scholar] [CrossRef]
- Moller, H.; Grelier, S.; Pardon, P.; Coma, V. Antimicrobial and physicochemical properties of chitosan-HPMC-based films. J. Agric. Food Chem. 2004, 52, 6585–6591. [Google Scholar] [CrossRef] [PubMed]
- Zimoch-Korzycka, A.; Jarmoluk, A. The use of chitosan, lysozyme, and the nano-silver as antimicrobial ingredients of edible protective hydrosols applied into the surface of meat. J. Food Sci. Technol. 2014, 52, 5996–6002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmuga Priya, D.; Suriyaprabha, R.; Yuvakkumar, R.; Rajendran, V. Chitosan-incorporated different nanocomposite HPMC films for food preservation. J. Nanopart. Res. 2014, 16, 2248. [Google Scholar] [CrossRef]
- Raizada, R.B.; Srivastava, M.K.; Kaushal, R.A.; Singh, R.P. Azadirachtin, A Neem Biopesticide: Subchronic Toxicity Assessment in Rats’. Food Chem. Toxicol. 2001, 39, 477–483. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Cao, J.; Jiang, W. Antifungal activities of neem (Azadirachta indica) seed kernel extracts on postharvest diseases in fruits. Afr. J. Microbiol. Res. 2010, 4, 1100–1104. [Google Scholar]
- Wijewardane, R.N.A.; Guleria, S.P.S. Effect of pre-cooling, fruit coating and packaging on postharvest quality of Apple. J. Food Sci. Technol. 2013, 50, 325–331. [Google Scholar] [CrossRef]
- Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym. 2017, 164, 268–283. [Google Scholar] [CrossRef]
- Nahak, G.; Sahu, K.R. In vitro antioxidative activity of Azadirachta indica and Melia azedarach Leaves by DPPH scavenging assay. J. Nat. Sci. 2010, 8, 4. [Google Scholar]
- Alonso, D.; Gimeno, M.; Olayo, R.; Vázquez-Torres, H.; Sepúlveda-Sánchez, J.; Shirai, K. Cross-linking chitosan into UV-irradiated cellulose fibers for the reparation of antimicrobial-finished textiles. Carbohydr. Polym. 2009, 77, 536–543. [Google Scholar] [CrossRef]
- Vernon-Carter, E.J.; Beristain, C.I.; Pedroza, I.R. Mesquite gum (Prosopis gum). Dev. Food Sci. 2000, 41, 217–238. [Google Scholar] [CrossRef]
- Acedo-Carrillo, J.I.; Rosas-Durazo, A.; Herrera-Urbina, R.; Rinaudo, M.; Goycoolea, F.M.; Valdez, M.A. Zeta potential and drop growth of oil in water emulsions stabilized with Mesquite gum. Carbohydr. Polym. 2006, 65, 327–336. [Google Scholar] [CrossRef]
- Ali, A.; Zahid, N.; Manickam, S.; Siddiqui, Y.; Alderson, P.; Maqbool, M. Effectiveness of submicron chitosan dispersions in controlling anthracnose and maintaining quality of dragon fruit. Postharvest Biol. Technol. 2013, 86, 147–153. [Google Scholar] [CrossRef]
- Holloway, P.J.; Jeffree, C.E. Epicuticular Waxes, 2nd ed.; Encyclopedia of Applied Plant Sciences; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 374–386. [Google Scholar] [CrossRef]
- Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117. [Google Scholar] [CrossRef]
- Li, X.; Li, M.; Wang, J.; Wang, L.; Han, C.; Jin, P.; Zheng, Y. Methyl jasmonate enhances wound-induced phenolic accumulation in pitaya fruit by regulating sugar content and energy status. Postharvest Biol. Technol. 2018, 137, 106–112. [Google Scholar] [CrossRef]
- Azeredo, H.M.C. Betalains: Properties, sources, applications, and stability—A review. Int. J. Food Sci. Technol. 2009, 44, 2365–2376. [Google Scholar] [CrossRef]
- Paul, V.; Pandey, R.; Srivastava, G.C. The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—An overview. J. Food Sci. Technol. 2012, 49, 1–21. [Google Scholar] [CrossRef]
- Hoog, G.S.; Horré, R. Molecular taxonomy of the Alternaria and Ulocladium species from humans and their identification in the routine laboratory. Mycoses 2002, 45, 259–276. [Google Scholar] [CrossRef]
- Morgan, E.D. Azadirachtin, a scientific gold mine. Bioorg. Med. Chem. 2009, 17, 4096–4105. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Cordero, G.; Terrazas, T.; López-Mata, L.; Trejo, C. Morpho-anatomical changes and photosynthetic metabolism of Stenocereus beneckei seedlings under soil water déficit. J. Exp. Bot. 2006, 57, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
- Aranday-García, R.; Román-Guerrero, A.; Ifuku, S.; Shirai, K. Successive inoculation of Lactobacillus brevis and Rhizopus oligosporus on shrimp wastes for recovery of chitin and added-value products. Process Biochem. 2017, 58, 17–24. [Google Scholar] [CrossRef]
- Guo, W.; Bian, Z.; Zhang, D.; Tang, G.; Liu, W.; Wang, J.; Li, Z.; Yang, F. Simultaneous Determination of Herbicide Residues in Tobacco Using Ultraperformance Convergence Chromatography Coupled with Solid-Phase Extraction. J. Sep. Sci. 2015, 38, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Hintze, J. NCSS 2007; NCSS, LLC: Kaysville, UT, USA, 2007. [Google Scholar]
- Carballo-Sánchez, M.P.; Ramírez-Ramírez, J.C.; Gimeno, M.; Hall, G.M.; Ríos-Durán, M.G.; Shirai, K. Papaya (Carica papaya) and tuna (Thunnus albacares) by-products fermentation as biomanufacturing approach towards antioxidant protein hydrolysates. Rev. Mex. Ing Quim. 2016, 15, 91–100. [Google Scholar]
- Pankaj, B.; Opara, U.; Al-Said, F. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Castellanos-Santiago, E.; Yahia, E.M. Identification and quantification of betalains from the fruit of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J. Agric. Food Chem. 2008, 56, 5758–5764. [Google Scholar] [CrossRef]
- Martínez-Castellanos, G.; Pelayo-Zaldívar, C.; Pérez-Flores, L.J.; López-Luna, A.; Gimeno, M.; Bárzana, E.; Shirai, K. Postharvest Litchi (Litchi chinensis Sonn.) Quality Preservation by Lactobacillus plantarum. Postharvest Biol. Technol. 2011, 59, 172–178. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Biopolymer/Emulsion | pH | D3,2 (μm) | Span | ζ (mV) |
---|---|---|---|---|
CH | 3.03 ± 0.02 | ND | ND | 38.90 ± 0.02 e |
CH | 4.50 ± 0.01 | ND | ND | 32.40 ± 0.07 d |
Hydroxypropylmethylcellulose (H) | 3.05 ± 0.03 | ND | ND | −0.04 ± 0.02 c |
Hydroxypropylmethylcellulose (H) | 4.52 ± 0.01 | ND | ND | 0.01 ± 0.001 c |
Mesquite gum (MG) | 3.04 ± 0.04 | ND | ND | −7.20 ± 0.07 b |
Mesquite gum (MG) | 4.53 ± 0.02 | ND | ND | −11.50 ± 0.03 a |
Emulsion of Neem in CH cross-linked to hydroxypropylmethylcellulose solution (NCHH) | 3.01 ± 0.01 | 451.22 ± 1.03 b | 0.78 ± 0.01 a | 20.26 ± 0.91 b |
Emulsion of Neem in CH with added Mesquite gum (NCHMG) | 4.51 ± 0.01 | 1.87 ± 0.87 a | 2.53 ± 0.41 b | −15.30 ± 1.11 a |
Treatment | Contact Angle (°) | WL Rate | Color Index | |||||
---|---|---|---|---|---|---|---|---|
day−1 | Significance Level | R2 | Time (d) | WI | RI | YI | ||
Control | 61.25 ± 0.33 b | 0.42 ± 0.03 | 0.0001 | 0.988 | 0 | 60.53 ± 0.63 a | 1.35 ± 0.11 c | 33.83 ± 2.05 a |
15 | 60.34 ± 0.65 a | 0.56 ± 0.05 a | 41.09 ± 1.98 b | |||||
Chitosan (CH) | 50.04 ± 0.48 a | 0.55 ± 0.03 | 0.0001 | 0.997 | 15 | 66.57 ± 0.63 c | 1.57 ± 0.08 d | 42.82 ± 1.87 b |
Chitosan cross-linked to hydroxypropyl-methylcellulose solution (CHH) | 61.79 ± 0.53 b | 0.38 ± 0.06 | 0.0001 | 0.963 | 15 | 66.88 ± 0.52 c | 1.55 ± 0.06 d | 46.95 ± 1.45 c |
Emulsion of Neem oil in chitosan cross-linked to hydroxypropyl-methylcellulose solution (NCHH) | 76.47 ± 0.45 c | 0.29 ± 0.07 | 0.0001 | 0.991 | 15 | 65.80 ± 0.37 c | 1.54 ± 0.10 d | 46.38 ± 1.84 c |
Emulsion of Neem oil in chitosan with added Mesquite gum (NCHMG) | 50.01 ± 0.32 a | 0.58 ± 0.04 | 0.0001 | 0.969 | 15 | 64.19 ± 0.48 b | 1.25 ± 0.12 b | 48.95 ± 2.05 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Valencia, C.G.; Román-Guerrero, A.; Aguilar-Santamaría, Á.; Cira, L.; Shirai, K. Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus). Molecules 2019, 24, 219. https://doi.org/10.3390/molecules24020219
Hernández-Valencia CG, Román-Guerrero A, Aguilar-Santamaría Á, Cira L, Shirai K. Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus). Molecules. 2019; 24(2):219. https://doi.org/10.3390/molecules24020219
Chicago/Turabian StyleHernández-Valencia, Carmen G., Angélica Román-Guerrero, Ángeles Aguilar-Santamaría, Luis Cira, and Keiko Shirai. 2019. "Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus)" Molecules 24, no. 2: 219. https://doi.org/10.3390/molecules24020219
APA StyleHernández-Valencia, C. G., Román-Guerrero, A., Aguilar-Santamaría, Á., Cira, L., & Shirai, K. (2019). Cross-Linking Chitosan into Hydroxypropylmethylcellulose for the Preparation of Neem Oil Coating for Postharvest Storage of Pitaya (Stenocereus pruinosus). Molecules, 24(2), 219. https://doi.org/10.3390/molecules24020219