Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics
Abstract
:1. Introduction
2. Polymyxin B Nonapeptide (PMBN)
2.1. Synergism
2.2. Efficacy
2.3. Toxicity
2.4. Past and Contemporary Use
3. NAB7061
4. NAB741/SPR741
4.1. Mode of Action
4.2. Synergism
4.3. Efficacy in Experimental Infections
4.4. Preclinical Pharmacokinetic and Toxicology Studies
4.5. Phase 1 Clinical Trial
5. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Ainsworth, G.C.; Brown, A.M.; Brownlee, G. Aerosporin, an antibiotic produced by Bacillus aerosporus Greer. Nature 1947, 160, 263. [Google Scholar] [CrossRef]
- Stansly, P.G.; Shepherd, R.G.; White, J. Polymyxin: A new chemotherapeutic agent. Bull. Johns Hopkins Hosp. 1947, 81, 43–54. [Google Scholar]
- Benedict, R.G.; Langlykke, A.F. Antibiotic activity of Bacillus polymyxa. J. Bacteriol. 1947, 54, 24–25. [Google Scholar] [PubMed]
- van Dellen, T.R. New wonder drug labeled polymyxin. The Spokesman-Review, 16 October 1948. [Google Scholar]
- Tumbrarello, M.; Raffaella Losito, A.; Giamarellou, H. Optimizing therapy in carbapenem-resistant Enterobacteriaceae infections. Curr. Opin. Infect. Dis. 2018, 31, 536–577. [Google Scholar]
- Otter, J.A.; Burgess, P.; Davies, P.; Mookerjee, S.; Singleton, J.; Gilchrist, M.; Parrons, D.; Brannigan, E.T.; Robotham, J.; Holmes, A.H. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae; an economic evaluation from a hospital perspective. Clin. Microbiol. Infect. 2017, 23, 188–196. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.J.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenem-producing organisms: A global scource. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Giagobbe, D.R.; Giamarrellou, G.; Viscoli, C.; Daikos, G.L.; Dimopoulos, G.; De Rosa, F.G.; Giamarelles-Bourboulis, E.J.; Rossolini, G.M.; Righi, E.; et al. Management of KPC-producing Klebsiella pneumoniae infections. Clin. Microbiol. Infect. 2018, 24, 133–144. [Google Scholar] [CrossRef]
- Doan, T.L.; Fung, F.B.; Mehta, D.; Riska, P.F. Tigecycline: A glycylcycline antimicrobial agent. Clin. Ther. 2006, 28, 1079–1106. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161. [Google Scholar] [CrossRef]
- Baron, S.; Hadjadj, L.; Rolain, J.M.; Olaitan, A.O. Molecular mechanisms of polymyxin resistance: Knowns and unknowns. Int. J. Antimicrob. Agents 2016, 48, 583–591. [Google Scholar] [CrossRef]
- Jeannot, K.; Bolard, A.; Plésiat, P. Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents 2017, 49, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [PubMed]
- SENTRY: SENTRY antimicrobial surveillance program. Available online: https://sentry-mvp.jmilabs.com/ (accessed on 10 January 2019).
- Lob, S.; Hackel, M.; Badal, R.; Young, K.; Motyi, M.; Sahm, D. Global Prevalence of Colistin and Carbapenem-Resistant Gram-Negative Organisms: SMART 2015–2016; Poster 375; ID Week 2017: San Diego, CA, USA, 2017. [Google Scholar]
- Cassini, A.; Diaz Högberg, L.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Skov Simonsen, G.; Colomb-Catinat, M.; Kretzscham, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2018. [Google Scholar] [CrossRef]
- Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev. 1992, 56, 395–401. [Google Scholar] [PubMed]
- Vaara, M. Novel derivatives of polymyxins. J. Antimicrob. Chemother. 2013, 68, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M.; Vaara, T.; Jenssen, M.; Helander, I.; Nurminen, M.; Rietchel, E.T.; Mäkelä, P.H. Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium. FEBS Lett. 1981, 29, 145–148. [Google Scholar] [CrossRef]
- Vaara, M. New polymyxin derivatives that display improved efficacy in animal infection models as compared to polymyxin and colistin. Med. Res. Rev. 2018, 38, 1661–1673. [Google Scholar] [CrossRef]
- Rabanal, F.; Cajal, Y. Recent advances and perspectives in the design and development of polymyxins. Nat. Prod. Rep. 2017, 34, 886–908. [Google Scholar] [CrossRef]
- Brown, P.; Dawson, M.J. Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J. Antibiot. 2017, 70, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Tsubery, H.; Ofek, I.; Cohen, S.; Fridkin, M. The functional association of polymyxin B with bacterial lipopolysaccharide is stereospecific: Studies on polymyxin B nonapeptide. Biochemistry 2000, 39, 11838–11844. [Google Scholar] [CrossRef]
- Vaara, M.; Vaara, T. Sensitization of Gram-negative bacteria to antibiotics and complement by a non-toxic oligopeptide. Nature 1983, 303, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M.; Vaara, T. Polycations sensitize enteric bacteria to antibiotics. Antimicrob. Agents Chemother. 1983, 24, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ofek, I.; Cohen, S.; Rahmani, R.; Kabha, K.; Herzig, Y.; Rubinstein, E. Antibacterial Synergism of Polymyxin B Nonapeptide and Hydrophobic Antibiotics in Experimental Gram-Negative Infections in Mice. Antimicrob. Agents Chemother. 1994, 38, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Danner, R.L.; Joiner, K.A.; Rubin, M.; Patterson, W.H.; Johnson, M.; Ayers, K.M.; Parrillo, J.E. Purification, Toxicity, and Antiendotoxin Activity of Polymyxin B Nonapeptide. Antimicrob. Agents Chemother. 1989, 33, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Keirstead, N.D.; Wagoner, M.P.; Bentley, P.; Blais, M.; Brown, C.; Chetham, L.; Ciaccio, P.; Dragan, Y.; Ferguson, D.; Fikes, J.; et al. Early prediction of polymyxin-induced nephrotoxicity with next-generation urinary kidney injury biomarkers. Toxicol. Sci. 2014, 137, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Goodwin, R.J.; Swales, J.G.; Gallagher, R.; Shankaran, H.; Sathe, A.; Pradeepan, S.; Xue, A.; Keirstead, N.; Sakasi, J.C. Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectrometry imaging. Chem. Res. Toxicol. 2015, 28, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.; Zabava, T.; Utley, L. Polymyxin B Nonapeptide is Nephrotoxic in Male Cynomolgus monkeys Following 7-Days Repeated Intravenous Dosing. Poster EV0304 22. In Proceedings of the ESCMID 2017, Vienna, Austria, 22–25 April 2017. [Google Scholar]
- Oliva, B.; Maiese, W.M.; Greenstein, M.; Borders, D.B.; Chopra, I. Mode of action of the depsipeptide antibiotic LL-AO341 beta 1 and partial characterization of a Staphylococcus aureus mutant resistant to the antibiotic. J. Antimicrob. Chemother. 1993, 32, 817–830. [Google Scholar] [CrossRef]
- Ohemeng, K.A.; Podlogar, B.L.; Nguyen, V.N.; Bernstein, J.I.; Krause, H.M.; Hilliard, J.J.; Barrett, J.F. DNA gyrase inhibitory and antimicrobial activities of some diphenic acid monohydroxamides. J. Med. Chem. 1997, 40, 3292–3296. [Google Scholar] [CrossRef]
- Nitzan, Y.; Balzam-Sudakevitz, A.; Ashkenazi, A. Eradication of Acinetobacter baumannii by photosensitized agents in vitro. J. Photochem. Photobiol. 1998, 42, 211–218. [Google Scholar] [CrossRef]
- Norcia, L.J.; Seibel, S.B.; Kamicker, B.J.; Lemay, M.A.; Lilley, S.C.; Hecker, S.J.; Bergeron, J.M.; Retsema, J.A.; Hayashi, S.F. In vitro microbiological characterization of novel macrolide CP-163,505 for animal health specific use. J. Antibiot. (Tokyo) 1998, 51, 136–144. [Google Scholar] [CrossRef]
- Kotani, T.; Nagai, D.; Asahi, K.; Suzuki, H.; Yamao, F.; Kataoka, N.; Yagura, T. Antibacterial properties of some cyclic organobismuth(III) compounds. Antimicrob. Agents Chemother. 2005, 49, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
- Baum, E.Z.; Crespo-Carbone, S.M.; Foleno, B.D.; Simon, L.D.; Guillemont, J.; Masietag, M.; Bush, K. MurF inhibitors with antibacterial activity: Effect on muropeptide levels. Antimicrob. Agents Chemother. 2009, 53, 3240–3247. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Hayama, K.; Sakakihara, S.; Nishino, K.; Noji, K.; Iino, R.; Yamaguchi, A. Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS ONE 2011, 6, e18547. [Google Scholar] [CrossRef] [PubMed]
- Guiles, J.W.; Toro, A.; Ochsner, U.A.; Bullard, J.M. Development of 4H-pyridopyrimides: A class of selective bacterial protein synthesis inhibitors. Org. Med. Chem. Lett. 2012, 2, 5. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Li, X.; Cai, S.; Xin, G.; Wang, Y.; Du, D.; He, S.; Huang, B.; Guo, X.; Zhao, R.; et al. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I. J. Med. Chem. 2014, 57, 3707–3714. [Google Scholar] [CrossRef] [PubMed]
- Sahlberg Bang, C.; Kinnunen, A.; Karlsson, M.; Önnberg, A.; Söderquist, B.; Persson, K. The antibacterial effect of nitric oxide against ESBL-producing uropathogenic E. coli is improved by combination with miconazole and polymyxin B nonapeptide. BMC Microbiol. 2014, 14, 65. [Google Scholar] [CrossRef]
- Pagès, J.-M.; Peslier, S.; Keating, T.A.; Lavigne, J.-P.; Nichols, W.W. Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob. Agents Chemother. 2015, 60, 1349–1359. [Google Scholar] [CrossRef]
- Jin, J.; Hsieh, Y.-H.; Cui, J.; Damera, K.; Dai, C.; Chaudhary, A.S.; Zhang, H.; Yang, H.; Cao, N.; Jiang, C.; et al. Using chemical probes to assess the feasibility of targeting SecA for developing antimicrobial agents against Gram-negative bacteria. Chem. Med. Chem. 2016, 11, 2511–2521. [Google Scholar] [CrossRef]
- Howard, J.J.; Sturge, C.R.; Moustafa, D.A.; Daly, S.M.; Marshall-Batty, K.R.; Felder, C.F.; Zamora, D.; Yabe-Gill, M.; Labandeira-Rey, M.; Bailey, S.M. Inhibition of Pseudomonas aeruginosa by peptide-conjugated phosphodiamidate morpholino oligomers. Antimicrob. Agents Chemother. 2017, 61, e01938. [Google Scholar] [CrossRef]
- Kitamura, S.; Owensby, A.; Wall, D.; Wolan, D.W. Lipoprotein signal peptidase inhibitors with antibiotics properties identified trough design of a robust in vitro HT plasform. Cell Chem. Biol. 2018, 25, 301–308. [Google Scholar] [CrossRef]
- Gatadi, S.; Gour, J.; Shukla, M.; Kaul, G.; Das, S.; Dasgupta, A.; Malasala, S.; Borra, R.S.; Madhavi, Y.V.; Chopra, S.; et al. Synthesis of 1,2,3-triazole linked 4(3H)-quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus. Eur. J. Med. Chem. 2018, 157, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Feigman, S.; Kim, S.; Pidgeon, S.E.; Yu, Y.; Ongwae, G.M.; Patel, D.S.; Regen, S.; Im, W.; Pires, M.M. Synthetic immunotherapeutics against Gram-negative pathogens. Cell Chem. Biol. 2018, 25, 1185–1194. [Google Scholar] [CrossRef] [PubMed]
- Nir, U.; Ladan, H.; Malik, Z.; Nitzan, Y. In vivo effects of porphyrins on bacterial DNA. J. Photochem. Photobiol. B Biol. 1991, 11, 295–306. [Google Scholar] [CrossRef]
- Wada, T.; Long, J.C.; Zhang, D.; Vik, S.B. A novel labeling approach supports the five-transmembrane model of subunit α of the Escherichia coli ATP synthase. J. Biol. Chem. 1999, 274, 17353–17357. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.D.; Lin, S.; Markwalder, J.A.; Mills, J.A.; DeVito, J.A.; Teleha, C.A.; Carlapati, V.; Thompson, A.; Trainor, G.L. Regulated expression of the Escherichia coli lepB gene as a tool for cellular testing of antimicrobial compounds that inhibit signal peptidase I in vitro. Antimicrob. Agents Chemother. 2002, 46, 3549–3554. [Google Scholar] [CrossRef] [PubMed]
- Longbottom, C.J.; Carson, C.F.; Hammer, K.A.; Mee, B.J.; Riley, T.V. Tolerance of Pseudomonas aeruginosa to Melaleuca alternifolia (tea tree) oil is associated with the outer membrane and energy-dependent cellular processes. J. Antimicrob. Chemother. 2004, 54, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Champlin, F.R.; Ellison, M.L.; Bullard, J.W.; Conrad, R.S. Effect of outer membrane permeabilization on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2005, 26, 159–164. [Google Scholar] [CrossRef]
- Walther, J.; Bröcker, M.J.; Wätzlich, D.; Nimtz, M.; Rohde, M.; Jahn, D.; Moser, J. Protochlorophyllide: A new photosensitizer for the photodynamic inactivation of Gram-positive and Gram-negative bacteria. FEMS Microbiol. Lett. 2009, 290, 156–163. [Google Scholar] [CrossRef]
- Misra, R.; Morrison, K.D.; Cho, H.J.; Khuu, T. Importance of real-time assays to distinguish multidrug efflux pump-inhibiting and outer membrane-destabilizing activities in Escherichia coli. J. Bacteriol. 2015, 197, 2479–2488. [Google Scholar] [CrossRef]
- Moison, E.; Xie, R.; Zhang, G.; Lebar, M.D.; Meredith, T.C.; Kahne, D. A fluorescent probe distinguishes between inhibition of early and late steps of lipopolysaccharide biogenesis in whole cells. ACS Chem. Biol. 2017, 12, 928–932. [Google Scholar] [CrossRef]
- Vaara, M.; Fox, J.; Loidl, G.; Siikanen, O.; Apajalahti, J.; Hansen, F.; Frimodt-Møller, N.; Nagai, J.; Takano, M.; Vaara, T. Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob. Agents Chemother. 2008, 52, 3229–3236. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M.; Siikanen, O.; Apajalahti, J.; Frimodt-Möller, N.; Vaara, T. Susceptibility of carbapenemase-producing strains of Klebsiella pneumoniae and Escherichia coli to the direct antibacterial activity of NAB739 and to the synergistic activity of NAB7061 with rifampicin and clarithromycin. J. Antimicrob. Chemother. 2010, 65, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Vingsbo Lundberg, C.; Vaara, T.; Frimodt-Möller, N.; Vaara, M. Novel polymyxin derivatives are effective in treating experimental Escherichia coli peritoneal infection in mice. J. Antimicrob. Chemother. 2010, 65, 981–985. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.E.; Cao, G.; Poydal, A.; Vaara, T.; Nation, R.L.; Vaara, M.; Li, J. Pharmacokinetics of novel antimicrobial cationic peptides NAB7061 and NAB739 in rats following intravenous administration. J Antimicrob. Chemother. 2009, 64, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M.; Vaara, T. Structure-activity studies on novel polymyxin derivatives that carry only three positive charges. Peptides 2010, 31, 2318–2321. [Google Scholar] [CrossRef] [PubMed]
- Vaara, M.; Siikanen, O.; Apajalahti, J.; Fox, J.; Frimodt-Møller, N.; He, H.; Poydal, A.; Li, J.; Nation, R.L.; Vaara, T. A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob. Agents Chemother. 2010, 54, 3341–3346. [Google Scholar] [CrossRef] [PubMed]
- Spero Therapeutics: Spero Therapeutics announces positive phase 1 clinical data. Available online: https://investors.sperotherapeutics.com/news-releases/news-release-details/spero-therapeutics-announces-positive-phase-1-clinical-data (accessed on 10 January 2019).
- French, S.; Farha, M.; Rubio, A.; Lister, T.; Cotroneo, N.; Parr, T.R., Jr.; Brown, E.D. Polymyxin Derivative SPR741 Disrupts Gram-Negative Outer Membrane Architecture Without Substantial Impacts on the Cytoplasmic Membrane. Poster Saturday-248. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Murray, B.; Pillar, C.; Pucci, M.; Shinabarger, D. Mechanism of Action of SPR741, a Potentiator Molecule for Gram-Negative Pathogens. Poster Saturday-491. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Anderson, E.M.; Cotroneo, N.; Parr, T.R., Jr.; Lister, T.; Khursigara, C.M. Electron Microscopy Reveals Activity of SPR741 at the Cell Envelope of Escherichia coli. Poster Friday-165. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Anderson, E.M.; Cotroneo, N.; Parr, T.R., Jr.; Lister, T.; Khursigara, C.M. Mechanistic Insight into the Antibiotic Potentiating Activity of SPR741 Using Electron Microscopy. Poster Sunday-222. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Corbett, D.; Wise, A.; Langley, T.; Skinner, E.; Trimby, E.; Birchall, S.; Dorali, A.; Sandford, S.; Williams, J.; Warn, P.; et al. Potentiation of antibiotic activity by a novel cationic peptide: Potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother. 2017, 61, e00200-17. [Google Scholar] [CrossRef] [PubMed]
- Veve, M.P.; Wagner, J.L. Lefamulin: Review of a promising novel pleuromutilin antibiotic. Pharmacotherapy 2018, 38, 935–946. [Google Scholar] [CrossRef]
- Nabriva: Our goal is to develop new antibiotics. Available online: https://www.nabriva.com/pipeline-research (accessed on 10 January 2019).
- Hackel, M.; Lister, T.; Parr, T.R., Jr.; Sahm, D. In vitro activity of SPR741 against recent clinical isolates of Escherichia coli and Klebsiella pneumoniae. Poster Saturday-500. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Mendes, R.E.; Rhomberg, P.R.; Becker, H.K.; Davis, A.P.; Lister, T.; Parr, T.R., Jr.; Vaara, M.; Flamm, R.K. Synergistic effect of Gram-positive agents tested in combination with a new polymyxin derivative (SPR741) against multidrug-resistant Gram-negative pathogens. Poster Saturday-490. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Mendes, R.E.; Rhomberg, P.R.; Becker, H.K.; Davis, A.P.; Lister, T.; Lee, A.; Parr, T.R., Jr.; Vaara, M.; Flamm, R.K. Potentiation of clarithromycin when combined with a new cationic peptide against Gram-negative clinical isolates and molecular analysis of macrolide resistance by next-generation sequencing. Poster Sunday-162. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Zurawski, D.Y.; Reinhart, A.A.; Alamneh, Y.A.; Pucci, M.J.; Si, Y.; Abu-Taleb, R.; Shearer, J.P.; Demons, S.T.; Tyner, S.D.; Lister, T. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2017, 61, e01239-17. [Google Scholar] [CrossRef]
- Hackel, M.; Lister, T.; Parr, T.R., Jr.; Sahm, D. In vitro activity of SPR741 against recent clinical isolates of Acinetobacter baumannii. Poster Saturday-501. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Zou, Y.; Cotroneo, N.; Lister, T.; Rubio, A. Bactericidal activity of piperacillin-tazobactam in combination with SPR741 against susceptible, extended-spectrum beta-lactamase producing, and multidrug resistant Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Poster P1675. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Mendes, R.E.; Rhomberg, P.R.; Lister, T.; Cotroneo, N.; Rubio, A.; Flamm, R.K. Antimicrobial activity of ceftazidime and piperacillin-tazobactam tested in combination with a potentiator molecule (SPR741) against Enterobacteriaceae causing urinary tract infections. Poster P1671. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Zou, Y.; Cotroneo, N.; Lister, T.; Rubio, A. Bactericidal activity of ceftazidime in combination with SPR741 against susceptible, extended-spectrum betalactamase-producing, and multidrug resistant Escherichia coli, Klebsiella pneumoniae, and Enterobacter species. Poster P1674. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Mendes, R.E.; Rhomberg, P.R.; Lister, T.; Cotroneo, N.; Rubio, A.; Flamm, R.K. Evaluation of synergistic effects of a potentiator molecule (SPR741) when tested in combination with a series of β-lactam agents against a challenge set of Gram-negative pathogens. Poster P1672. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Citron, D.M.; Tyrrell, K.L.; Rubio, A.; Goldstein, E.J. In vitro activity of ceftazidime alone and in combination with SPR741 against anaerobic bacteria. Poster P1673. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Sweeney, D.; Cotroneo, N.; Lister, T.; Rubio, A.; Shinabarger, D.; Pillar, C. The impact of varied test conditions on the in vitro activity of the novel gyrase inhibitor SPR719 in combination with the potentiator SPR741. Poster Saturday-255. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Cotroneo, N.; Zou, Y.; Howells, A.; Parr, T.R., Jr.; Lister, T.; Rubio, A. Activity profile of novel gyrase inhibitors SPR719, SPR750, and SPR751 alone and in combination with potentiator SPR741. Poster Saturday-258. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Mendes, R.E.; Rhomberg, P.R.; Edah, Y.; Lister, T.; Parr, T.R., Jr.; Vaara, M.; Flamm, R.K. Synergistic effect of novel gyrase inhibitor agents (SPR750 and SPR751) in combination with a polymyxin derivative (SPR741) against recent Acinetobacter baumannii and Enterobacteriaceae. Poster Sunday-13. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Hackel, M.; Lister, T.; Parr, T.R., Jr.; Vaara, M.; Sahm, D. In vitro activity of SPR741 combined with three novel compounds against recent clinical isolates of Acinetobacter baumannii and Enterobacteriaceae. Poster Sunday-27. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Mendes, R.E.; Rhomberg, P.R.; Lee, A.; Lister, T.; Parr, T.R., Jr.; Vaara, M.; Flamm, R.K. Antimicrobial synergistic effect of a new anti-Gram-positive agents tested in combination with a polymyxin derivative against Gram-negative pathogens, including ESKAPE group organisms. Poster Sunday-23. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Brunati, C.; Thomsen, T.T.; Gaspari, E.; Maffiolo, S.; Sosio, M.; Jabes, D.; Løbner-Olelen, A.; Donaldo, S. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: Synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells. J. Antimicrob. Chemother. 2018, 73, 414–424. [Google Scholar] [CrossRef]
- Chopra, I.; Hacker, K. Uptake of minocycline by Escherichia coli. J. Antimicrob. Chemother. 1992, 29, 19–25. [Google Scholar] [CrossRef]
- Rubio, A.; Weiss, W.J.; Pulse, M.; Lister, T.; Parr, T.R., Jr. In vivo efficacy of combinations of novel antimicrobial peptide SPR741 and rifampin in a K. pneumoniae murine model of urinary tract infection. Poster Saturday-249. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Weiss, W.J.; Pulse, M.; Nguyen, P.; Parr, T.R., Jr.; Lister, T.; Rubio, A. Efficacy of novel cationic peptide SPR741 and gyrase inhibitor SPR720 combinations against carbapenem-resistant K. pneumoniae in a murine UTI model. Poster Saturday-259. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Warn, P.; Sattar, A.; Thommes, P.; Corbett, D.; Holden, K.; Lister, T.; Parr, T.R., Jr. In vivo efficacy of combinations of novel antimicrobial cationic peptide SPR741 and clarithromycin in short-duration murine thigh and lung models of Gram-negative infection. Poster Saturday-498. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Stainton, S.M.; Abdelraouf, K.; Utley, L.; Pucci, M.; Lister, T.; Nicolau, D.P. Assessment of the in vivo activity of SPR741 in combination with azithromycin against multidrug-resistant Enterobacteriaceae isolates in the neutropenic murine thigh infection model. Antimicrob. Agents Chemother. 2018, 62, e00239-18. [Google Scholar] [CrossRef] [PubMed]
- Warn, P.; Corbett, D.; Gould, J.; Parker, G.; Daws, G.; Thommes, P.; Lister, T.; Parr, T.R., Jr. Impact of dosing regimens on the in vivo efficacy of combinations of novel antimicrobial cationic peptide SPR741 and rifampicin in murine thigh infection models. Poster Saturday-496. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Warn, P.; Thommes, P.; Vaddi, S.; Corbett, D.; Coles, D.; Vaccaro, L.; Lister, T.; Parr, T.R., Jr. In vivo efficacy of combinations of novel antimicrobial peptide SPR741 and rifampicin in short-duration murine thigh infection models of Gram-negative bacterial infection. Poster Monday-561. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Grosser, L.; Heang, K.; Farrington, K.; Thommes, P.; Teague, J.; Payne, L.; Corbett, D.; Parr, T.R., Jr.; Lister, T.; Rubio, A. In vivo characterization of potentiator compound SPR741 in combination with the novel gyrase inhibitor SPR719 in an acute murine thigh infection model. Poster Saturday-256. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Mingeot-Leclerq, M.P.; Tulkens, P.M.; Denamur, S.; Vaara, T.; Vaara, M. Novel polymyxin derivatives are less cytotoxic than polymyxin B to renal proximal tubular cells. Peptides 2012, 35, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Weber, E.J.; Lidberg, K.A.; Wang, L.; Bammler, T.K.; MacDonald, J.W.; Li, M.J.; Redhair, M.; Atkins, W.M.; Tran, C.; Hines, K.M.; et al. Safety assessment of polymyxin antibiotics utilizing a human kidney 3 D microphysiological system. JCI Insight 2018. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.; Bleavins, M.; Lister, T.; Vaara, M.; Parr, T.R., Jr. The assessment of SPR741 for nephrotoxicity in Cynomolgus monkeys and Sprague-Dawley rats. Poster Monday-523. In Proceedings of the ASM Microbe 2016—American Society for Microbiology Conference, Boston, CA, USA, 16–20 June 2016. [Google Scholar]
- Coleman, S.; Bleavins, M. A GLP 14-day repeat dose toxicology study of SPR741 in monkeys. Poster Saturday-251. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Utley, L.; Coleman, S. Pharmacokinetics of SPR741 in rats and non-human primates after a one hour intravenous infusion. Poster Saturday-247. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Coleman, S.; Bleavins, M. SPR741 GLP safety pharmacology studies across cardiac, pulmonary and central nervous systems. Poster Saturday-252. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Coleman, S.; Bleavins, M. SPR741 is non-genotoxic in the ICH battery of GLP Ames, chromosomal aberration, in in vivo micronucleus studies. Poster Saturday-253. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Utley, L.; Coleman, S. In vitro ADME properties of SPR741 support progression into clinical development. Poster Saturday-254. In Proceedings of the ASM Microbe 2017—American Society for Microbiology Conference, New Orleans, LA, USA, 1–5 June 2017. [Google Scholar]
- Eckburg, P.B.; Farinola, N.; Utley, L.; Walpole, S.; Keutzer, T.; Kopp, E.; Coleman, S.; Tomayko, J. Safety of SPR741, a novel polymyxin potentiator, in healthy adults receiving single- and multiple-dose intravenous administrations. Poster P2206. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Utley, L.; Lister, T.; Coleman, S.; Eckburg, P.B. Determination of the pharmacokinetics of single (SAD) and multiple ascending doses (MAD) of SPR741 in healthy volunteers. Poster P2233. In Proceedings of the ECCMID 2018, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Brown, P.; Dawson, M.J.; Simonovic, M.; Boakes, S.; Duperchy, E. Polymyxin Derivatives and Their Use in Different Combination Therapies Together with Different. Antibiotics. Patent Application WO 2014/188178, 26 November 2014. [Google Scholar]
- Brown, P.; Dawson, M.J.; Simonovic, M.; Boakes, S.; Duperchy, E.; Stanway, S.J.; Wilson, A.; Moss, S.F. Polymyxin Derivatives and Their Use in Combination Therapies Together with Different. Antibiotics. Patent Application WO 2015/135976, 18 September 2015. [Google Scholar]
- Lister, T.; Sharma, R.; Zabawa, T.; Zahler, R. Polymyxin Analogs Useful as Antibiotic. Potentiators. Patent Application WO 2017/189866, 3 November 2017. [Google Scholar]
- Lister, T.; Sharma, R.; Zabawa, T.; Zahler, R. Serine Replacement Polymyxin Analogues Useful as Antibiotic. Potentiators. Patent Application WO 2017/189868, 3 November 2017. [Google Scholar]
- Rabanal, F.; Grau-Campistany, A.; Vila-Farrés, X.; Gonzales-Linares, J.; Borràs, M.; Vila, J.; Manresa, A.; Cajal, Y. A bioinsprired peptide scaffold with high antibiotic activity and low in vivo toxicity. Sci. Rep. 2015, 5, 10558. [Google Scholar] [CrossRef] [PubMed]
- Rudilla, H.; Fusté, E.; Cajal, Y.; Rabanal, F.; Vinuesa, T.; Viñas, M. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules 2016, 21, 1223. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, S.A.; Vederas, J.C. Unacylated tridecapeptin A1 acts as an effective sensitizer of Gram-negative bacteria to other antibiotics. Int. J. Antimicrob. Agents 2014, 44, 493–499. [Google Scholar] [CrossRef]
- Moon, S.H.; Zhang, X.; Zheng, G.; Meeker, D.G.; Smeltzer, M.S.; Huang, E. Novel linear lipopeptide paenipeptins with potential for eradicating biofilms and sensitizing Gram-negative bacteria to rifampicin and clarithromycin. J. Med. Chem. 2017, 60, 9630–9640. [Google Scholar] [CrossRef]
- Vaara, M.; Porro, M. Group of peptides that act synergistically with hydrophobic antibiotics against Gram-negative enteric bacteria. Antimicrob. Agents Chemother. 1996, 40, 1801–1805. [Google Scholar] [CrossRef]
- Zabava, T.P.; Pucci, M.J.; Parr, T.R., Jr.; Lister, T. Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr. Opin. Microbiol. 2016, 33, 7–12. [Google Scholar] [CrossRef]
- Tascini, C.; Tagliaferri, F.; Giani, T.; Leonildi, A.; Flammini, S.; Casini, B.; Lewis, R.; Ferrati, S.; Rossolini, G.M.; Menichetti, F. Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 3990–3993. [Google Scholar] [CrossRef] [PubMed]
- MacNair, C.R.; Stokes, J.M.; Carfrae, L.A.; Flebig-Comyn, A.A.; Coombes, B.K.; Mulvey, M.R.; Brown, E.D. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nat. Commun. 2018, 9, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Brennan-Krohn, T.; Pironti, A.; Kirby, J.E. Synergistic activity of colistin-containing combinations against colistin-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62, e00873-18. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, J.M.; Aboklaish, A.F.; Walsh, T.R.; Vaara, T.; Vaara, M. The novel polymyxin derivative NAB739 is synergistic with several antibiotics against polymyxin-resistant strains of Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Peptides 2018. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaara, M. Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 2019, 24, 249. https://doi.org/10.3390/molecules24020249
Vaara M. Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules. 2019; 24(2):249. https://doi.org/10.3390/molecules24020249
Chicago/Turabian StyleVaara, Martti. 2019. "Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics" Molecules 24, no. 2: 249. https://doi.org/10.3390/molecules24020249
APA StyleVaara, M. (2019). Polymyxin Derivatives that Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules, 24(2), 249. https://doi.org/10.3390/molecules24020249