Supporting Information to accompany:

Hinged and wide: a new P^P ligand for emissive [Cu(P^P)(N^N)][PF₆] complexes

Sarah Keller ¹, Matthias Bantle ¹, Alessandro Prescimone ¹, Edwin C. Constable ¹ and Catherine E. Housecroft ^{1*}

¹ Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland; sarah.keller@chimieparistech.psl.eu; mattu.bantle@gmail.com; alessandro.prescimone@unibas.ch; edwin.constable@unibas.ch

MS Spectrum Positive Full Scan

Figure S1. Electrospray mass spectrum (positive mode) of [Cu(BIPHEP)(bpy)][PF₆].

Figure S2. Electrospray mass spectrum (positive mode) of [Cu(BIPHEP)(6-Mebpy)][PF₆].

MS Spectrum Positive Full Scan

MS Spectrum Positive MassPeaks:9 Spectrum Mode:Single 0.000(1) Base Peak:769.28(8365829) BG Mode:None Segment 1 - Event 1

Figure S3. Electrospray mass spectrum (positive mode) of [Cu(BIPHEP)(6-Etbpy)][PF₆].

Figure S4. Electrospray mass spectrum (positive mode) of [Cu(BIPHEP)(5,5'-Me₂bpy)][PF₆].

Figure S5. COSY spectrum of [Cu(BIPHEP)(bpy)][PF₆] (500 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S6. HMQC spectrum of [Cu(BIPHEP)(bpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S7. HMBC spectrum of [Cu(BIPHEP)(bpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 **Figure S8.** COSY spectrum of [Cu(BIPHEP)(6-Mebpy)][PF₆] (500 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S9. HMQC spectrum of [Cu(BIPHEP)(6-Mebpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S10. HMBC spectrum of [Cu(BIPHEP)(6-Mebpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S11. COSY spectrum of [Cu(BIPHEP)(6-Etbpy)][PF₆] (500 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S12. HMQC spectrum of [Cu(BIPHEP)(6-Etbpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S13. HMBC spectrum of [Cu(BIPHEP)(6-Etbpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S14. COSY spectrum of [Cu(BIPHEP)(5,5'-Me₂bpy)][PF₆] (500 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S15. HMQC spectrum of [Cu(BIPHEP)(5,5'-Me₂bpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S16. HMBC spectrum of [Cu(BIPHEP)(5,5'-Me₂bpy)][PF₆] (¹H 500 MHz, ¹³C{¹H} 126 MHz, acetone- d_6 , 298 K). Scales: δ / ppm.

Figure S17. The ³¹P{¹H} NMR spectrum (202 MHz, acetone- d_6 , 298 K) of [Cu(BIPHEP)(6-Etbpy)][PF₆]. Scale: δ / ppm.

Figure S18. Space-filling representations of the π -stacking interactions between a phenyl ring of a PPh₂ group and one ring of the BIPHEP backbone in the complex cations in (a) [Cu(BIPHEP)(bpy)][PF₆]·CH₂Cl₂, (b) [Cu(BIPHEP)(6-Mebpy)][PF₆]·Et₂O·0.5H₂O and (c) [Cu(BIPHEP)(5,5'-Me₂bpy)][PF₆]·CH₂Cl₂.

Figure S19. Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(BIPHEP)(bpy)][PF_6]$ (vs. Fc^+/Fc , $[^nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Figure S20. Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(BIPHEP)(6-Mebpy)][PF_6]$ (vs. Fc^+/Fc , $[^nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s^{-1}).

Figure S21. Cyclic voltammogram of a CH_2Cl_2 solution of [Cu(BIPHEP)(6-Etbpy)][PF₆] (vs. Fc⁺/Fc, [*n*Bu₄N][PF₆] supporting electrolyte, scan rate = 0.1 V s⁻¹).

Figure S22. Cyclic voltammogram of a CH_2Cl_2 solution of $[Cu(BIPHEP)(5,5'-Me_2bpy)][PF_6]$ (vs. Fc^+/Fc , $[nBu_4N][PF_6]$ supporting electrolyte, scan rate = 0.1 V s⁻¹).

Figure 23. Normalized solution emission spectra of $[Cu(BIPHEP)(N^N)][PF_6]$ with N^N = 6-Mebpy, 6-Etbpy and 5,5'-Me₂bpy (deaerated CH₂Cl₂, 5.0 × 10⁻⁵ mol dm⁻³). λ_{exc} = 390 nm.