Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-8-amines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
2.3. Docking Analysis
Methods
3. Materials and Methods
3.1. General Information
3.2. General Method for the Preparation of Compounds 5a–f and 7c,e–g,j,l,m
3.3. General Method for the Preparation of Compounds 8 and 9
3.4. Cell Viability Assay
3.5. Antitumor Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Vanyushin, B.F. Enzymatic DNA methylation: What it is needed for in the cell. JSM Genet. Genom. 2016, 3, 1010–1014. [Google Scholar]
- Vanyushin, B.F. Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry 2005, 70, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Worm, J.; Guldberg, P. DNA methylation: An epigenetic pathway to cancer and a promising target for anticancer therapy. J. Oral Pathol. Med. 2002, 31, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Bartosik, M.; Ondrouskova, E. Novel approaches in DNA methylation studies–MS-HRM analysis and electrochemistry. Klin. Onkol. 2016, 29, 64–71. [Google Scholar] [CrossRef]
- Mikeska, T.; Craig, J.M. DNA methylation biomarkers: Cancer and beyond. Genes 2014, 5, 821–864. [Google Scholar] [CrossRef]
- Beltran-Garcia, J.; Osca-Verdegal, R.; Mena-Molla, S.; Garcia-Gimenez, J.L. Epigenetic IVD tests for personalized precision medicine in cancer. Front. Genet. 2019, 10, 1–14. [Google Scholar] [CrossRef]
- Howell, P.M.; Liu, Z.; Khong, H.T. Demethylating agents in the treatment of cancer. Pharmaceuticals 2010, 3, 2022–2044. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.; Raynaud, F.I.; et al. Synthesis and biological evaluation of pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110a inhibitors. Bioorganic Med. Chem. Lett. 2007, 17, 2438–2442. [Google Scholar] [CrossRef]
- Taltavull, J.; Serrat, J.; Gracia, J.; Gavalda, A.; Andres, M.; Cordoba, M.; Miralpeix, M.; Vilella, D.; Beleta, J.; Ryder, H.; et al. Synthesis and biological activity of pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidines as phosphodiesterase type 4 Inhibitors. J. Med. Chem. 2010, 53, 6912–6922. [Google Scholar] [CrossRef]
- Agarwal, A.; Louise-May, S.; Thanassi, J.A.; Podos, S.D.; Cheng, J.; Thoma, C.; Liu, C.; Wiles, J.A.; Nelson, D.M.; Phadke, A.S.; et al. Small molecule inhibitors of E. coli primase, a novel bacterial target. Bioorg. Med. Chem. Lett. 2007, 17, 2807–2810. [Google Scholar] [CrossRef]
- Kjellerup, L.; Gordon, S.; Cohrt, K.O.; Brown, W.D.; Fuglsang, A.T.; Winther, A.-M.L. Identification of antifungal H+-ATPase inhibitors with effect on the plasma membrane potential. Antimicrob. Agents Chemother. 2017, 61, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Sirakanyan, S.N.; Ovakimyan, A.A.; Noravyan, A.S.; Dzhagatspanyan, I.A.; Shakhatuni, A.A.; Nazaryan, I.M.; Hakopyan, A.G. Synthesis and antyconvulsive activity of 8-amino substitudet cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidines. Pharm. Chem. J. 2013, 47, 130–134. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Ovakimyan, A.A.; Noravyan, A.S.; Minasyan, N.S.; Dzhagatspanyan, I.A.; Nazaryan, I.M.; Hakopyan, A.G. Synthesis and neurotropic activity of 8-amino derivatives of condensed thieno[3,2-d]- and furo[3,2-d]pyrimidines. Pharm. Chem. J. 2014, 47, 655–659. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Akopyan, E.K.; Paronikyan, R.G.; Akopyan, A.G.; Ovakimyan, A.A. Synthesis and anticonvulsant activity of 7(8)-amino derivatives of condensed thieno[3,2-d]pyrimidines. Pharm. Chem. J. 2016, 50, 296–300. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Geronikaki, A.; Spinelli, D.; Hakobyan, E.K.; Kartsev, V.G.; Petrou, A.; Hovakimyan, A.A. Synthesis and antimicrobial activity of new amino derivatives of pyrano[4″,3″:4′,5′]pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine. An. Acad. Bras. Cienc. 2018, 90, 1043–1057. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Kartsev, V.G.; Hakobyan, E.K.; Hovakimyan, A.A. Synthesis and antimicrobial activity of new derivatives of pyrano[4″,3″:4′,5′]pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine and new heterocyclic systems. Synth. Commun. 2019, 49, 1262–1276. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Paronikyan, E.G.; Noravyan, A.S. The Chemistry and Biological Activity of Nitrogen-containing Heterocycles and Alkaloids; Iridium Press: Moscow, Russia, 2001; pp. 519–521. [Google Scholar]
- Sirakanyan, S.N.; Paronikyan, E.G.; Noravyan, A.S. The Chemistry and Biological Activity of Synthetic and Natural Compounds; IBS Press: Moscow, Russia, 2003; pp. 398–401. [Google Scholar]
- Paronikyan, E.G.; Sirakanyan, S.N.; Noravyan, A.S.; Paronikyan, R.G.; Dzhagatspanyan, I.A. Synthesis and anticonvulsant activity of pyrazolo[3,4-b]pyrano(thiopyrano)[4,3-d]pyridine and pyrazolo[3,4-c]isoquinoline derivatives. Pharm. Chem. J. 2001, 35, 8–10. [Google Scholar] [CrossRef]
- Sirakanyan, S.N.; Paronikyan, E.G.; Ghukasyan, M.S.; Noravyan, A.S. Synthesis of 8-amino derivatives of condensed furo[3,2-d]pyrimidines. Chem. Heterocycl. Compd. 2010, 46, 736–741. [Google Scholar] [CrossRef]
- Brown, R.; Plumb, J.A. Demethylation of DNA by decitabine in cancer chemotherapy. Expert Rev. Anticancer Ther. 2004, 4, 501–510. [Google Scholar] [CrossRef]
- Fahy, J.; Jeltsch, A.; Arimondo, P.B. DNA methyltransferase inhibitors in cancer: A chemical therapeutic patent overview and selected clinical studies. Expert Opin. Ther. Pat. 2012, 22, 1427–1442. [Google Scholar] [CrossRef]
- Christman, J.K.; Sheikhnejad, G.; Marasco, C.J.; Sufrin, J.R. 5-Methyl-2′-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation. Proc. Natl. Acad. Sci. USA 1995, 92, 7347–7351. [Google Scholar] [CrossRef] [PubMed]
- Gowher, H.; Jeltsch, A. Mammalian DNA methyltransferases: New discoveries and open questions. Biochem. Soc. Trans. 2018, 46, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Yu, J.; Fu, W.; Wang, Z.; Xu, L.; Chang, S.; Wang, E.; Zhu, F.; Zeng, S.; Kang, Y.; et al. Insight into the selective binding mechanism of DNMT1 and DNMT3A inhibitors: A molecular simulation study. Phys. Chem. Chem. Phys. 2019, 21, 12931–12947. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Gao, L.; Song, J. Structural basis of DNMT1 and DNMT3A-mediated DNA methylation. Genes 2018, 9, 620. [Google Scholar] [CrossRef] [PubMed]
- Callebaut, I.; Courvalin, J.C.; Mornon, J.P. The BAH (bromo-adjacent homology) domain: A link between DNA methylation, replication and transcriptional regulation. FEBS Lett. 1999, 446, 189–193. [Google Scholar] [CrossRef]
- Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM–A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 1994, 15, 488–506. [Google Scholar] [CrossRef]
- Bottegoni, G.; Kufareva, I.; Totrov, M.; Abagyan, R. Four-dimensional docking: A fast and accurate account of discrete receptor flexibility in ligand docking. J. Med. Chem. 2009, 52, 397–406. [Google Scholar] [CrossRef]
- Nicola, G.; Smith, C.A.; Abagyan, R. New method for the assessment of all drug-like pockets across a structural genome. J. Comput. Biol. 2008, 15, 231–240. [Google Scholar] [CrossRef]
- Schapira, M.; Totrov, M.; Abagyan, R. Prediction of the binding energy for small molecules, peptides and proteins. J. Mol. Recognit. 1999, 12, 177–190. [Google Scholar] [CrossRef]
- Arabyan, E.; Hakobyan, A.; Kotsinyan, A.; Karalyan, Z.; Arakelov, V.; Arakelov, G.; Nazaryan, K.; Simonyan, A.; Aroutiounian, R.; Ferreira, F.; et al. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antivir. Res. 2018, 156, 128–137. [Google Scholar] [CrossRef]
- Vanyushin, B.F.; Masin, F.N.; Vasiliev, V.R.; Belozersky, A.N. The content of 5-methylcytosine in animal DNA: The species and tissue specifity. Biochim. Biophys. Acta 1973, 299, 397–403. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–9 are available from the authors. |
DNA, Sarcoma-180, and Compound | N (R1R2) | R | Y | Content of Bases in DNA, mol % | Inhibition of the Level of DNA Methylation, % | |
---|---|---|---|---|---|---|
Source of DNA | − | − | − | 5-MC ± ζ | G + C + 5-MC | |
S-180 | − | − | − | 0.64 ± 0.02 | 42.66 | |
5a | − | − | 0.38 ± 0.02 | 42.50 | 40.6 | |
5b | − | − | 0.25 ± 0.02 | 43.74 | 60.9 | |
5c | − | − | 0.49 ± 0.02 | 42.44 | 23.0 | |
5d | − | − | 0.42 ± 0.03 | 42.58 | 34.4 | |
5e | − | − | 0.46 ± 0.02 | 42.44 | 28.1 | |
5f | − | − | 0.07 ± 0.02 | 44.02 | 89.1 | |
7a | i-Pr | O | 0.85 ± 0.03 | 43.50 | − | |
7b | i-Pr | O | 0.24 ± 0.01 | 44.16 | 62.5 | |
7c | i-Pr | O | 0.37 ± 0.01 | 42.72 | 42.2 | |
7d | i-Pr | O | 0.33 ± 0.01 | 43.44 | 48.4 | |
7e | i-Pr | O | 0.28 ± 0.01 | 44.00 | 56.2 | |
7f | i-Pr | O | 0.50 ± 0.02 | 42.82 | 21.9 | |
7g | i-Pr | O | 0.38 ± 0.02 | 43.32 | 40.6 | |
7h | i-Pr | O | 0.42 ± 0.02 | 43.20 | 34.4 | |
7i | i-Pr | O | 0.52 ± 0.02 | 44.64 | − | |
7j | i-Bu | O | 0.54 ± 0.01 | 43.20 | − | |
7k | i-Bu | O | 0.52 ± 0.01 | 42.70 | 18.8 | |
7l | i-Pr | S | 0.45 ± 0.03 | 43.76 | 29.7 | |
7m | i-Pr | S | 0.40 ± 0.02 | 43.06 | 37.5 | |
Doxorubicin | 0.21 ± 0.01 | 43.41 | 67.2 |
Compound | Binding Energy (kcal/mol) | ICM Score | PDB ID |
---|---|---|---|
5b | −14.73 | −34.61 | 4WXX |
5f | −15.59 | −36.41 | 4DA4 |
7b | −10.64 | −28.01 | 4YOC |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Hakobyan, E.K.; Sahakyan, H.; Arabyan, E.; Zakaryan, H.; Nersesyan, L.E.; Aharonyan, A.S.; Danielyan, I.S.; et al. Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-8-amines. Molecules 2019, 24, 3952. https://doi.org/10.3390/molecules24213952
Sirakanyan SN, Spinelli D, Geronikaki A, Hakobyan EK, Sahakyan H, Arabyan E, Zakaryan H, Nersesyan LE, Aharonyan AS, Danielyan IS, et al. Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-8-amines. Molecules. 2019; 24(21):3952. https://doi.org/10.3390/molecules24213952
Chicago/Turabian StyleSirakanyan, Samvel N., Domenico Spinelli, Athina Geronikaki, Elmira K. Hakobyan, Harutyun Sahakyan, Erik Arabyan, Hovakim Zakaryan, Lusine E. Nersesyan, Anahit S. Aharonyan, Irina S. Danielyan, and et al. 2019. "Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-8-amines" Molecules 24, no. 21: 3952. https://doi.org/10.3390/molecules24213952
APA StyleSirakanyan, S. N., Spinelli, D., Geronikaki, A., Hakobyan, E. K., Sahakyan, H., Arabyan, E., Zakaryan, H., Nersesyan, L. E., Aharonyan, A. S., Danielyan, I. S., Muradyan, R. E., & Hovakimyan, A. A. (2019). Synthesis, Antitumor Activity, and Docking Analysis of New Pyrido[3′,2′:4,5]furo(thieno)[3,2-d]pyrimidin-8-amines. Molecules, 24(21), 3952. https://doi.org/10.3390/molecules24213952