Automated Stopped-Flow Fluorimetric Sensor for Biologically Active Adamantane Derivatives Based on Zone Fluidics

Paraskevas D. Tzanavaras*1, Sofia Papadimitriou1 and Constantinos K. Zacharis2

¹ Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences,
 Aristotle University of Thessaloniki, GR-54124, Greece
 ² Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy,
 Aristotle University of Thessaloniki, GR-54124, Greece

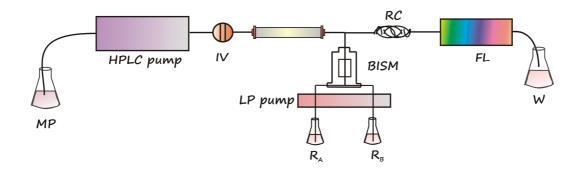
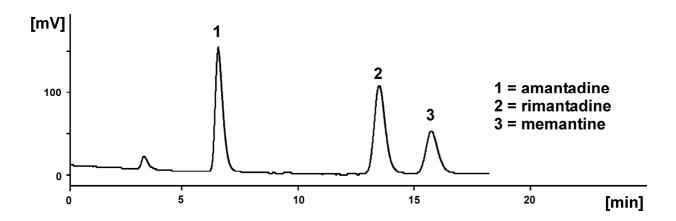



Figure S1. Schematic diagram of the HPLC-PCD setup: MP = mobile phase [50:50 v/v CH₃OH:NaH₂PO₄ (25 mmol L⁻¹, pH = 3.0)]; IV = autosampler ($V = 50 \mu L$); C = HPLC column (Prevail C18, 100 × 4.6 mm i.d.); BISM = Binary Inlet Static Mixer; LP pump = low-pressure pump; RC = knotted reaction coil (100 cm / 0.5 mm i.d.); PP = peristaltic pump; R_A = OPA ($c = 20 \text{ mmol L}^{-1}$, $Q_V = 0.2 \text{ mL min}^{-1}$); R_B = NAC (5 mmol L⁻¹) / borate buffer (100 mmol L⁻¹, pH = 11.0, $Q_V = 0.2 \text{ mL min}^{-1}$); FL = Fluorescence detector ($\lambda_{ex}/\lambda_{em} = 340 / 455 \text{ nm}$).

Figure S2. Reaction between OPA and the studied adamantine derivatives using N-acetylcysteine (NAC) as nucleophilic reagent; AMA = amantadine, RIM = rimantadine, MEM = memantine.

Figure S3. Representative chromatogram from standard mixture of the adamantane derivatives by the corroborative HPLC-PCD method; for experimental details please see sections 2.1 and 2.5.

Table S1. ZF sequence for the automated determination of adamantane derivatives.

a/a	Time (<i>s</i>)	Valve position	Pump action	Flow rate (mL min ⁻¹)	Volume (μL)	Action description
1	1	2	Off	_	-	Selection of NAC/Buffer port
2	7.5	2	Aspirate	0.6	75	Aspiration of NAC/Buffer in the HC
3	1	3	Off	_	-	Selection of OPA port
4	5	3	Aspirate	0.6	50	Aspiration of OPA in the HC
5	1	1	Off	_	-	Selection of sample port
6	10	1	Aspirate	0.6	100	Aspiration of sample in the HC
7	1	4	Off	_	-	Selection of FL detector port
8	30	4	Deliver	0.6	300	Deliver of the reaction mixture to the RC
9	60	4	Off	_	-	Stop-flow to proceed the reaction
10	120	4	Deliver	0.6	600	Deliver of the reaction mixture to the FL detector