Raman Spectroscopy and Chemometric Modeling to Predict Physical-Chemical Honey Properties from Campeche, Mexico
Abstract
:1. Introduction
2. Analysis of Results
2.1. Raman Analysis
- Spectral region between 230–510 cm−1 are related to stretching and bending vibrations of the C-O, C-C-O and C-C-C that form the molecular structure of sugars [21].
- The region between 595–691 cm−1 is attributed to stretching vibrations of unsaturated rings present in HMF, carotenes, flavones, flavonoids, and polyphenols [22].
- The peak found between 691–752 cm−1 is assigned to stretching vibrations of C-O and C-C-O, and bending vibrations of O-C-O. On the other hand, the band between 770–917 cm−1 is a product of the stretching vibrations of the C-C and C-H present in glucose [28].
- Regarding the bands between 820–1024 cm−1, these correspond to deformation vibrations of C-H and methylene bonds –CH2–, as well as the bending vibrations of C-O-H [29].
- The peak present between 1024–1094 cm−1 is attributed to bending vibrations of the C-H and C-O-H bonds of sugars, and bending vibrations of the C-N bonds of amino acids and proteins [30].
- The band between 1094–1191 cm−1 is assigned to stretching vibrations of the C-O, C-O-C bonds of sugars, and the C-N bonds of proteins and amino acids [18].
- Finally, the spectral region between 1262–1300 cm−1 corresponds to vibrations of C-H and O-C-H, while the spectral bands of 1300–1460 cm−1 are due to bending and wobble vibrations of the functional groups CH and –OH [30].
2.2. Chemometric Models
2.2.1. Chemometric Models to Predict pH, Free Acidity, Lactonic Acidity, and Total Acidity
2.2.2. Chemometric Model to Predict Electrical Conductivity, Redox Potential, Moisture, and TSS
2.2.3. Chemometric Model to Predict Content of HMF and Ashes
2.3. Analysis of the PLS loadings
3. Materials and Methods
3.1. Honey Samples
3.2. Physicochemical Analysis
3.2.1. Moisture and Total Soluble Solid
3.2.2. pH, Free Acidity, Lactonic Acidity, and Total Acidity
3.2.3. Electrical Conductivity and Redox Potential
3.2.4. Ash Content and Hydroxymethylfurfural
3.3. Raman Analysis
3.4. Chemometric Model Development
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
σ | Standard deviation |
R2cal | Coefficient of determination of cross-validation |
R2val | Coefficient of determination for external validation |
tc | Student’s t-test confidence value |
tv | Student’s t-test external validation value |
X | Raman spectroscopy matrix data |
Y | Vector value of a physicochemical property |
ANN | Artificial Neural Networks |
AOAC | Association of Official Analytical Chemists |
EC | Electrical conductivity |
FT | Fourier transform |
HCA | Hierarchical Clustering Analysis |
HMF | hydroxymethylfurfural |
IHC | International Honey Commission |
LDA | Linear Discriminant Analysis |
LVs | Latent variables |
NIRS | Near infrared spectroscopy |
PCA | Principal Component Analysis |
PCR | Principal Component Regression |
PLS | Partial Least Square |
SEC | Standard error of calibration |
SEP | Standard error of prediction |
SNV | Standard Normal Variate |
TSS | Total soluble solids |
References
- Cianciosi, D.; Forbes-Hernández, T.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed]
- Ramón-Sierra, J.; Peraza-López, E.; Rodríguez-Borges, R.; Yam-Puc, A.; Madera-Santana, T.; Ortiz-Vázquez, E. Partial characterization of ethanolic extract of Melipona beecheii propolis and in vitro evaluation of its antifungal activity. Rev. Bras. Farmacogn. 2019, 29, 319–324. [Google Scholar] [CrossRef]
- Duca, A.; Sturza, A.; Moacă, E.-A.; Negrea, M.; Lalescu, V.-D.; Lungeanu, D.; Dehelean, C.-A.; Muntean, D.-M.; Alexa, E. Identification of Resveratrol as Bioactive Compound of Propolis from Western Romania and Characterization of Phenolic Profile and Antioxidant Activity of Ethanolic Extracts. Molecules 2019, 24, 3368. [Google Scholar] [CrossRef] [PubMed]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef]
- Guerrini, A.; Bruni, R.; Maietti, S.; Poli, F.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Scalvenzi, L.; Sacchetti, G. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chem. 2009, 114, 1413–1420. [Google Scholar] [CrossRef]
- Maione, C.; Barbosa, F.; Barbosa, R.M. Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: A review. Comput. Electron. Agric. 2019, 157, 436–446. [Google Scholar] [CrossRef]
- Se, K.W.; Wahab, R.A.; Syed Yaacob, S.N.; Ghoshal, S.K. Detection techniques for adulterants in honey: Challenges and recent trends. J. Food Compos. Anal. 2019, 80, 16–32. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission Codex Standard for Honey, CODEX STAN 12-1981. Available online: http://www.fao.org/3/w0076e/w0076e30.htm (accessed on 1 November 2019).
- Bogdanov, S. Harmonised methods of the International Honey Commission. Available online: http://www.ihc-platform.net/ (accessed on 1 November 2019).
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analysis Chemists International: Rockville, MD, USA, 2005; ISBN 0935584544. [Google Scholar]
- Das, C.; Chakraborty, S.; Acharya, K.; Bera, N.K.; Chattopadhyay, D.; Karmakar, A.; Chattopadhyay, S. FT-MIR supported Electrical Impedance Spectroscopy based study of sugar adulterated honeys from different floral origin. Talanta 2017, 171, 327–334. [Google Scholar] [CrossRef]
- Brereton, R.G. Introduction to multivariate calibration in analytical chemistry. Analyst 2000, 125, 2125–2154. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening method based on Visible-NIR spectroscopy for the identification and quantification of different adulterants in high-quality honey. Talanta 2019, 203, 235–241. [Google Scholar] [CrossRef]
- Corvucci, F.; Nobili, L.; Melucci, D.; Grillenzoni, F.-V. The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem. 2015, 169, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, J.; Macías-López, E.; Bujdud-Pérez, J.; Medina-Ramírez, I. Spectroscopic study of honey from Apis mellifera from different regions in Mexico. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 178, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Jandrić, Z.; Haughey, S.A.; Frew, R.D.; McComb, K.; Galvin-King, P.; Elliott, C.T.; Cannavan, A. Discrimination of honey of different floral origins by a combination of various chemical parameters. Food Chem. 2015, 189, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Ropciuc, S. Botanical authentication of honeys based on Raman spectra. J. Food Meas. Charact. 2018, 12, 545–554. [Google Scholar] [CrossRef]
- Özbalci, B.; Boyaci, İ.H.; Topcu, A.; Kadılar, C.; Tamer, U. Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem. 2013, 136, 1444–1452. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S. Honey Adulteration Detection Using Raman Spectroscopy. Food Anal. Methods 2018, 11, 959–968. [Google Scholar] [CrossRef]
- Anjos, O.; Santos, A.J.A.; Paixão, V.; Estevinho, L.M. Physicochemical characterization of Lavandula spp. honey with FT-Raman spectroscopy. Talanta 2018, 178, 43–48. [Google Scholar] [CrossRef]
- Tahir, H.E.; Xiaobo, Z.; Zhihua, L.; Jiyong, S.; Zhai, X.; Wang, S.; Mariod, A.A. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy. Food Chem. 2017, 226, 202–211. [Google Scholar] [CrossRef]
- Li, S.; Shan, Y.; Zhu, X.; Zhang, X.; Ling, G. Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J. Food Compos. Anal. 2012, 28, 69–74. [Google Scholar] [CrossRef]
- Yam-Puc, A.; Santana-Hernández, A.A.; Yah-Nahuat, P.N.; Ramón-Sierra, J.M.; Cáceres-Farfán, M.R.; Borges-Argáez, R.L.; Ortiz-Vázquez, E. Pentacyclic triterpenes and other constituents in propolis extract from Melipona beecheii collected in Yucatan, México. Rev. Bras. Farmacogn. 2019, 29, 358–363. [Google Scholar] [CrossRef]
- Porter-Bolland, L.; Ellis, E.A.; Guariguata, M.R.; Ruiz-Mallén, I.; Negrete-Yankelevich, S.; Reyes-García, V. Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. For. Ecol. Manage. 2012, 268, 6–17. [Google Scholar] [CrossRef]
- Güemes-Ricalde, F.J.; Villanueva-G, R.; Eaton, K.D. Honey production by the Mayans in the Yucatan peninsula. Bee World 2003, 84, 144–154. [Google Scholar] [CrossRef]
- Villanueva-Gutiérrez, R.; Moguel-Ordóñez, Y.B.; Echazarreta-González, C.M.; Arana-López, G. Monofloral honeys in the Yucatán Peninsula, Mexico. Grana 2009, 48, 214–223. [Google Scholar] [CrossRef]
- Mondragón-Cortez, P.; Ulloa, J.A.; Rosas-Ulloa, P.; Rodríguez-Rodríguez, R.; Resendiz Vázquez, J.A. Physicochemical characterization of honey from the West region of México. CyTA—J. Food 2013, 11, 7–13. [Google Scholar] [CrossRef]
- White, J.W. Moisture in Honey Review of Chemical and Physical Methods. J. Assoc. Off. Anal. Chem. 1969, 52, 729–737. [Google Scholar]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of entomological origin of honey based on its physicochemical and antioxidant properties. Int. J. Food Prop. 2017, 20, S2723–S2738. [Google Scholar] [CrossRef]
- Belay, A.; Solomon, W.K.; Bultossa, G.; Adgaba, N.; Melaku, S. Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food Chem. 2013, 141, 3386–3392. [Google Scholar] [CrossRef]
- Jimenez, M.; Beristain, C.I.; Azuara, E.; Mendoza, M.R.; Pascual, L.A. Physicochemical and antioxidant properties of honey from Scaptotrigona mexicana bee. J. Apic. Res. 2016, 55, 151–160. [Google Scholar] [CrossRef]
- Sereia, M.J.; Março, P.H.; Perdoncini, M.R.G.; Parpinelli, R.S.; de Lima, E.G.; Anjo, F.A. Techniques for the Evaluation of Physicochemical Quality and Bioactive Compounds in Honey. In Honey Analysis; InTech: London, UK, 2017. [Google Scholar]
- Kizil, R.; Irudayaraj, J.; Seetharaman, K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J. Agric. Food Chem. 2002, 50, 3912–3918. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S.; Shan, Y.; Zhang, Z.; Li, G.; Su, D.; Liu, F. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J. Food Eng. 2010, 101, 92–97. [Google Scholar] [CrossRef]
- Salvador, L.; Guijarro, M.; Rubio, D.; Aucatoma, B.; Guillén, T.; Vargas Jentzsch, P.; Ciobotă, V.; Stolker, L.; Ulic, S.; Vásquez, L.; et al. Exploratory Monitoring of the Quality and Authenticity of Commercial Honey in Ecuador. Foods 2019, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Masry, S.H.D.; Shehata, M.G. Physicochemical characteristics of honey from different origins. Ann. Agric. Sci. 2015, 60, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Cozzolino, D.; Corbella, E.; Smyth, H.E. Quality Control of Honey Using Infrared Spectroscopy: A Review. Appl. Spectrosc. Rev. 2011, 46, 523–538. [Google Scholar] [CrossRef]
- Ruoff, K.; Luginbühl, W.; Bogdanov, S.; Bosset, J.-O.; Estermann, B.; Ziolko, T.; Kheradmandan, S.; Amad/, R. Quantitative determination of physical and chemical measurands in honey by near-infrared spectrometry. Eur. Food Res. Technol. 2007, 225, 415–423. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.R.; Videira, R.; Monteiro, A.P.; Valentão, P.; Andrade, P.B. Honey from Luso region (Portugal): Physicochemical characteristics and mineral contents. Microchem. J. 2009, 93, 73–77. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Badeka, A.; Kontakos, S.; Karabournioti, S.; Kontominas, M.G. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chem. 2014, 146, 548–557. [Google Scholar] [CrossRef]
- Khalil, M.I.; Moniruzzaman, M.; Boukraâ, L.; Benhanifia, M.; Islam, M.A.; Islam, M.N.; Sulaiman, S.A.; Gan, S.H. Physicochemical and Antioxidant Properties of Algerian Honey. Molecules 2012, 17, 11199–11215. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.J.; Musharraf, S.G.; Choudhary, M.I.; Rahman, A.-. Application of analytical methods in authentication and adulteration of honey. Food Chem. 2017, 217, 687–698. [Google Scholar] [CrossRef]
- Chen, C. Relationship between Water Activity and Moisture Content in Floral Honey. Foods 2019, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Lemos, M.S.; Venturieri, G.C.; Dantas Filho, H.A.; Dantas, K.G.F. Evaluation of the physicochemical parameters and inorganic constituents of honeys from the Amazon region. J. Apic. Res. 2018, 57, 135–144. [Google Scholar] [CrossRef]
- Lichtenberg-Kraag, B.; Hedtke, C.; Bienefeld, K. Infrared spectroscopy in routine quality analysis of honey. Apidologie 2002, 33, 327–337. [Google Scholar] [CrossRef]
- Yücel, Y.; Sultanog˘lu, P. Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Biosci. 2013, 1, 16–25. [Google Scholar] [CrossRef]
- Grazia Mignani, A.; Ciaccheri, L.; Mencaglia, A.A.; Di Sanzo, R.; Carabetta, S.; Russo, M. Dispersive Raman Spectroscopy for the Nondestructive and Rapid Assessment of the Quality of Southern Italian Honey Types. J. Light. Technol. 2016, 34, 4479–4485. [Google Scholar] [CrossRef]
Sample Availability: The data used to support the findings of this study are available from the first author upon request. |
Property | Mean ± σ | Minimum | Maximum | Mean ± σ | Minimum | Maximum |
---|---|---|---|---|---|---|
Calakmul | Calkini | |||||
pH | 4.01 ± 0.23 | 3.66 | 5.11 | 4.08 ± 0.17 | 3.80 | 4.77 |
Free acidity | 21.16 ± 5.03 | 8.12 | 32.53 | 19.79 ± 3.03 | 15.52 | 25.51 |
Lactonic acidity | 2.96 ± 1.001 | 1.23 | 5.78 | 2.77 ± 0.84 | 1.47 | 4.27 |
Total acidity | 24.17 ± 5.44 | 11.55 | 36.78 | 22.51 ± 3.31 | 18.25 | 28.67 |
Electric conductivity | 0.58 ± 0.08 | 0.35 | 0.69 | 0.61 ± 0.05 | 0.49 | 0.68 |
Redox potential | 181.94 ± 13.91 | 133.1 | 207.2 | 173.54 ± 8.87 | 161.6 | 198.1 |
Moisture | 14.98 ± 1.42 | 11.81 | 17.66 | 12.21 ± 2.27 | 12.29 | 16.66 |
TSS | 85.02 ± 1.41 | 82.37 | 88.19 | 85.79 ± 1.09 | 83.34 | 87.71 |
Ash content | 0.14 ± 0.06 | 0.018 | 0.42 | 0.143 ± 0.14 | 0.09 | 0.21 |
HMF | 2.87 ± 1.33 | 1.27 | 5.89 | 2.31 ± 0.75 | 1.46 | 4.35 |
Campeche | Carmen | |||||
pH | 3.95 ± 0.16 | 3.49 | 4.18 | 3.97 ± 0.14 | 3.64 | 4.25 |
Free acidity | 17.03 ± 3.52 | 12.39 | 26.1 | 21.22 ± 4.19 | 8.01 | 28.53 |
Lactonic acidity | 2.51 ± 0.68 | 1.47 | 4.15 | 3.09 ± 1.08 | 1.23 | 5.78 |
Total acidity | 19.53 ± 3.81 | 14.17 | 29.65 | 24.32 ± 4.41 | 11.45 | 31.34 |
Electric conductivity | 0.48 ± 0.08 | 0.28 | 0.69 | 0.57 ± 0.08 | 0.35 | 0.69 |
Redox potential | 177.49 ± 9.89 | 151.3 | 204.2 | 186.23 ± 8.41 | 170.1 | 207.4 |
Moisture | 15.25 ± 3.11 | 12.76 | 24.6 | 15.02 ± 1.53 | 11.81 | 17.66 |
TSS | 84.74 ± 3.11 | 75.42 | 87.24 | 84.98 ± 1.53 | 82.34 | 88.19 |
Ash content | 0.13 ± 0.018 | 0.08 | 0.16 | 0.14 ± 0.09 | 0.02 | 0.88 |
HMF | 2.12 ± 0.46 | 1.52 | 3.53 | 2.98 ± 1.43 | 1.27 | 5.89 |
Champotón | Escarcega | |||||
pH | 3.78 ± 0.18 | 3.55 | 4.23 | 3.85 ± 0.17 | 3.62 | 4.31 |
Free acidity | 22.81 ± 4.26 | 11.9 | 32.5 | 22.72 ± 5.11 | 13.5 | 31.5 |
Lactonic acidity | 3.59 ± 0.78 | 2.37 | 5.98 | 3.51 ± 0.62 | 1.78 | 4.37 |
Total acidity | 26.41 ± 4.47 | 17.01 | 38.28 | 26.23 ± 5.13 | 17.07 | 35.59 |
Electric conductivity | 0.54 ± 0.11 | 0.36 | 0.69 | 0.58 ± 0.12 | 0.35 | 0.755 |
Redox potential | 189.03 ± 11.39 | 165.4 | 202.6 | 172.52 ± 9.38 | 146.1 | 185.8 |
Moisture | 16.9 ± 3.11 | 13.32 | 25.81 | 15.16 ± 0.88 | 13.65 | 16.89 |
TSS | 83.01 ± 3.11 | 74.2 | 86.36 | 84.83 ± 0.88 | 83.11 | 86.35 |
Ash content | 0.14 ± 0.03 | 0.11 | 0.17 | 0.13 ± 0.02 | 0.068 | 0.18 |
HMF | 3.34 ± 1.32 | 1.57 | 6.39 | 2.34 ± 1.44 | 1.57 | 4.89 |
Hecelchacan | Hopelchén | |||||
pH | 4.09 ± 0.09 | 3.91 | 4.21 | 4.34 ± 0.42 | 3.51 | 5.2 |
Free acidity | 17.78 ± 3.06 | 16.85 | 22.5 | 16.64 ± 6.95 | 6.5 | 35.1 |
Lactonic acidity | 5.14 ± 2.48 | 3.19 | 9.45 | 3.44 ± 0.91 | 1.67 | 5.92 |
Total acidity | 22.93 ± 5.41 | 21.07 | 31.95 | 20.08 ± 6.82 | 10.41 | 37.77 |
Electric conductivity | 0.61 ± 0.056 | 0.51 | 0.659 | 0.59 ± 0.08 | 0.44 | 0.71 |
Redox potential | 177.49 ± 14.34 | 167.5 | 202.1 | 153.93 ± 22.21 | 105.6 | 198.2 |
Moisture | 17.09 ± 3.19 | 15.17 | 22.67 | 14.72 ± 1.23 | 12.43 | 17.4 |
TSS | 82.85 ± 3.16 | 77.33 | 85.45 | 85.27 ± 1.23 | 82.6 | 87.57 |
Ash content | 0.13 ± 0.015 | 0.11 | 0.14 | 0.14 ± 0.03 | 0.05 | 0.21 |
HMF | 2.89 ± 0.265 | 2.39 | 3.27 | 3.18 ± 0.95 | 1.56 | 5.78 |
Properties | Units | Calibration LVs | SEC | R2cal | Validation LVs | SEP | R2val |
---|---|---|---|---|---|---|---|
pH | - | 5 | 0.86 | 0.92 | 4 | 0.18 | 0.743 |
Free acidity | meq kg−1 | 6 | 1.02 | 0.98 | 6 | 1.47 | 0.935 |
Lactonic acidity | meq kg−1 | 6 | 0.37 | 0.94 | 7 | 0.41 | 0.911 |
Total acidity | Meq kg−1 | 6 | 1.08 | 0.98 | 4 | 1.23 | 0.897 |
Electrical conductivity | mS cm−1 | 6 | 0.46 | 0.87 | 4 | 0.85 | 0.79 |
Redox potential | mV | 7 | 1.06 | 0.99 | 8 | 1.48 | 0.95 |
Moisture | % | 6 | 0.42 | 0.98 | 9 | 0.52 | 0.95 |
TSS | % | 6 | 0.58 | 0.92 | 6 | 1.32 | 0.87 |
Ash content | % | 6 | 1.21 | 0.78 | 6 | 2.54 | 0.21 |
HMF | mg kg−1 | 7 | 0.76 | 0.82 | 8 | 1.73 | 0.63 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anguebes-Franseschi, F.; Abatal, M.; Pat, L.; Flores, A.; Córdova Quiroz, A.V.; Ramírez-Elias, M.A.; San Pedro, L.; May Tzuc, O.; Bassam, A. Raman Spectroscopy and Chemometric Modeling to Predict Physical-Chemical Honey Properties from Campeche, Mexico. Molecules 2019, 24, 4091. https://doi.org/10.3390/molecules24224091
Anguebes-Franseschi F, Abatal M, Pat L, Flores A, Córdova Quiroz AV, Ramírez-Elias MA, San Pedro L, May Tzuc O, Bassam A. Raman Spectroscopy and Chemometric Modeling to Predict Physical-Chemical Honey Properties from Campeche, Mexico. Molecules. 2019; 24(22):4091. https://doi.org/10.3390/molecules24224091
Chicago/Turabian StyleAnguebes-Franseschi, F., M. Abatal, Lucio Pat, A. Flores, A. V. Córdova Quiroz, M. A. Ramírez-Elias, L. San Pedro, O. May Tzuc, and A. Bassam. 2019. "Raman Spectroscopy and Chemometric Modeling to Predict Physical-Chemical Honey Properties from Campeche, Mexico" Molecules 24, no. 22: 4091. https://doi.org/10.3390/molecules24224091
APA StyleAnguebes-Franseschi, F., Abatal, M., Pat, L., Flores, A., Córdova Quiroz, A. V., Ramírez-Elias, M. A., San Pedro, L., May Tzuc, O., & Bassam, A. (2019). Raman Spectroscopy and Chemometric Modeling to Predict Physical-Chemical Honey Properties from Campeche, Mexico. Molecules, 24(22), 4091. https://doi.org/10.3390/molecules24224091