Bioactive Plant Compounds in Coffee Charcoal (Coffeae carbo) Extract Inhibit Cytokine Release from Activated Human THP-1 Macrophages
Abstract
:1. Introduction
2. Results
2.1. HPLC and LC/MS Characterization of the Extract
2.2. Effects on Cytokine Release from Activated Macrophages
2.3. SEM Images of Coffee Charcoal and Activated Charcoal
3. Discussion
4. Materials and Methods
4.1. Substances
4.2. Plant Extraction
4.3. HPLC and LC/MS Characterization of the Extract
4.4. Cell Culture
4.5. Cytokine Quantification
4.6. Cell Viability Testing
4.7. Scanning Electron Microscopy
4.8. Data Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heisler, A. Landarzt und Naturheilverfahren. Hippokrates 1937, 8, 1247–1251. [Google Scholar]
- Heisler, A. Erfolgreiche Behandlung schleichender Infektionen mit “Kaffeekohle”. Hippokrates 1938, 9, 1114–1116. [Google Scholar]
- Kuhn, A.; Schäfer, G. Experimentelle Beiträge zur Chemie der Heislerschen Kaffeekohle. Süddeutsche Apotheker-Zeitung 1939, 79, 434–442. [Google Scholar]
- Riedel, H. Pharmakologisches über die Kaffeekohle. Klinische Wochenschrift 1939, 18, 609. [Google Scholar] [CrossRef]
- Heisler, A. Ergänzende Erfahrungen über Kaffeekohle. Hippokrates 1939, 10, 39–41. [Google Scholar]
- Dr. Gustav Klein GmbH & Co. KG. Fachinformation Carbo Königsfeld. A. Available online: https://www.fachinfo.de/api/fachinfo/pdf/021682 (accessed on 10 October 2019).
- Repha GmbH Biologische Arzneimittel. Fachinformation Myrrhinil-Intest. Available online: https://www.fachinfo.de/api/fachinfo/pdf/003675 (accessed on 10 October 2019).
- Langhorst, J.; Varnhagen, I.; Schneider, S.B.; Albrecht, U.; Rueffer, A.; Stange, R.; Michalsen, A.; Dobos, G.J. Randomised clinical trial: A herbal preparation of myrrh, chamomile and coffee charcoal compared with mesalazine in maintaining remission in ulcerative colitis--a double-blind, double-dummy study. Aliment. Pharmacol. Ther. 2013, 38, 490–500. [Google Scholar] [CrossRef]
- Albrecht, U.; Müller, V.; Schneider, B.; Stange, R. Efficacy and safety of a herbal medicinal product containing myrrh, chamomile and coffee charcoal for the treatment of gastrointestinal disorders: A non-interventional study. BMJ Open Gastroenterol. 2014, 1, e000015. [Google Scholar] [CrossRef]
- Langhorst, J.; Lauche, R.; Koch, A. Myrrhe, Kamille und Kaffeekohle in der Therapie von Patienten mit Colitis ulcerosa. Z. Phytother. 2017, 37, 249–253. [Google Scholar] [CrossRef]
- Kommission E BGA/BfArM. Coffeae carbo/Kaffeekohle. Bundesanzeiger 1988. Available online: https://buecher.heilpflanzen-welt.de/BGA-Kommission-E-Monographien/coffeae-carbo-kaffeekohle.htm (accessed on 26 November 2019).
- Vissiennon, C.; Hammoud, D.; Rodewald, S.; Fester, K.; Goos, K.-H.; Nieber, K.; Arnhold, J. Chamomile flower, myrrh, and coffee charcoal, components of a traditional herbal medicinal product, diminish proinflammatory activation in human macrophages. Planta Med. 2017. [CrossRef]
- Vissiennon, C.; Hammoud, D.; Goos, K.-H.; Nieber, K.; Arnhold, J. Synergistic interactions of chamomile flower, myrrh and coffee charcoal in inhibiting pro-inflammatory chemokine release from activated human macrophages. Synergy 2017, 4, 13–18. [Google Scholar] [CrossRef]
- Pumnea, T.; Sibaev, A.; Lipowicz, B.; Storr, M. The herbal extracts of myrrh, chamomile and coffee charcoal modulate intestinal neurotransmission and motility in murine small intestine. EC Gastroenterol. Dig. Syst. 2017, 4, 15–30. [Google Scholar]
- Rodrigues, N.P.; Bragagnolo, N. Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. J. Food Compos. Anal. 2013, 32, 105–115. [Google Scholar] [CrossRef]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Abate, S.; Labella, C.; Cataldi, T.R.I. Identification and fragmentation pathways of caffeine metabolites in urine samples via liquid chromatography with positive electrospray ionization coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1065–1074. [Google Scholar] [CrossRef]
- Baeza, G.; Sarriá, B.; Bravo, L.; Mateos, R. Exhaustive qualitative LC-DAD-MSn analysis of arabica green coffee beans: Cinnamoyl-glycosides and cinnamoylshikimic acids as new polyphenols in green coffee. J. Agric. Food Chem. 2016, 64, 9663–9674. [Google Scholar] [CrossRef]
- Riedel, H. Zur Adsorptionsfähigkeit der Kaffeekohle. Klinische Wochenschrift 1940, 19, 1064. [Google Scholar] [CrossRef]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Stefanello, N.; Spanevello, R.M.; Passamonti, S.; Porciúncula, L.; Bonan, C.D.; Olabiyi, A.A.; Teixeira da Rocha, J.B.; Assmann, C.E.; Morsch, V.M.; Schetinger, M.R.C. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food Chem. Toxicol. 2019, 123, 298–313. [Google Scholar] [CrossRef]
- Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, S.; Piacentino, D.; Daria, P.; Sani, G.; Aromatario, M. Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Iris, M.; Tsou, P.-S.; Sawalha, A.H. Caffeine inhibits STAT1 signaling and downregulates inflammatory pathways involved in autoimmunity. Clin. Immunol. 2018, 192, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Al Reef, T.; Ghanem, E. Caffeine: Well-known as psychotropic substance, but little as immunomodulator. Immunobiology 2018, 223, 818–825. [Google Scholar] [CrossRef]
- Allred, K.F.; Yackley, K.M.; Vanamala, J.; Allred, C.D. Trigonelline is a novel phytoestrogen in coffee beans. J. Nutr. 2009, 139, 1833–1838. [Google Scholar] [CrossRef]
- Van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 2009, 32, 1023–1025. [Google Scholar] [CrossRef]
- Antonisamy, P.; Arasu, M.V.; Dhanasekaran, M.; Choi, K.C.; Aravinthan, A.; Kim, N.S.; Kang, C.-W.; Kim, J.-H. Protective effects of trigonelline against indomethacin-induced gastric ulcer in rats and potential underlying mechanisms. Food Funct. 2016, 7, 398–408. [Google Scholar] [CrossRef]
- Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer 1980, 26, 171–176. [Google Scholar] [CrossRef]
Sample Availability: Samples of the myrrh, coffee charcoal and chamomile flower dry extract are available from the authors. |
Peak | RT [min] | λmax [nm] | m/z | Ion | Compound |
---|---|---|---|---|---|
1 | 4.1 | 200, 263 | 138.12 | [M + H]+ | Trigonelline |
2 | 32.778 | 244, 325 | 352.96 706.84 | [M − H]− [2M − H]− | Neochlorogenic acid (3-caffeoylquinic acid) |
3 | 39.743 | 244, 325 | 190.92 352.98 707.13 | [quinic acid-H]− [M − H]− [2M − H]− | Chlorogenic acid (5-caffeoylquinic acid) |
4 | 40.093 | 218, 272 | 138.12 163.08 195.08 | [M + H–OCNCH3]+ [M + H–CH3OH]+ [M + H]+ | Caffeine |
5 | 40.646 | 244, 325 | 190.95 352.96 707.13 | [quinic acid-H]− [M − H]− [2M − H]− | Cryptochlorogenic acid (4-caffeoylquinic acid) |
6 | 44.807 | 238 | 172.95 192.96 366.99 734.89 | [quinic acid–H–H2O]− [ferulic acid–H]− [M − H]− [2M − H]− | Feruloylquinic acid |
7 | 46.266 | 235 | 172.93 190.92 366.98 735.15 | [quinic acid–H–H2O]− [quinic acid–H]− [M − H]− [2M − H]− | Feruloylquinic acid |
334.97 703.03 | [M − H]− [M + feruloylquinic acid–H]- | Caffeoylquinolactone |
Mediator | TNF | IL-6 | MCP-1 | |||
---|---|---|---|---|---|---|
Treatment | MI [%] | IC50 [95% CI] [µM] | MI [%] | IC50 [95% CI] [µM] | MI [%] | IC50 [95% CI] [µM] |
Caffeine | - | - | - | - | - | - |
Caffeic acid | 70 | 24 [14.45–38.83] | - | - | - | - |
Chlorogenic acid | 69 | 31 [18.58–44.44] | - | - | - | - |
Cryptochlorogenic acid | 92 | 20 [13.01–26.35] | 68 | 21 [5.741–30.62] | 73 | 12 [3.707–21.30] |
Neochlorogenic acid | 69 | 28 [17.97–39.43] | - | - | - | - |
Trigonelline | - | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiller, L.; Hammoud Mahdi, D.; Jankuhn, S.; Lipowicz, B.; Vissiennon, C. Bioactive Plant Compounds in Coffee Charcoal (Coffeae carbo) Extract Inhibit Cytokine Release from Activated Human THP-1 Macrophages. Molecules 2019, 24, 4263. https://doi.org/10.3390/molecules24234263
Schiller L, Hammoud Mahdi D, Jankuhn S, Lipowicz B, Vissiennon C. Bioactive Plant Compounds in Coffee Charcoal (Coffeae carbo) Extract Inhibit Cytokine Release from Activated Human THP-1 Macrophages. Molecules. 2019; 24(23):4263. https://doi.org/10.3390/molecules24234263
Chicago/Turabian StyleSchiller, Laura, Dima Hammoud Mahdi, Steffen Jankuhn, Bartosz Lipowicz, and Cica Vissiennon. 2019. "Bioactive Plant Compounds in Coffee Charcoal (Coffeae carbo) Extract Inhibit Cytokine Release from Activated Human THP-1 Macrophages" Molecules 24, no. 23: 4263. https://doi.org/10.3390/molecules24234263
APA StyleSchiller, L., Hammoud Mahdi, D., Jankuhn, S., Lipowicz, B., & Vissiennon, C. (2019). Bioactive Plant Compounds in Coffee Charcoal (Coffeae carbo) Extract Inhibit Cytokine Release from Activated Human THP-1 Macrophages. Molecules, 24(23), 4263. https://doi.org/10.3390/molecules24234263