Volatilomic Analysis of Four Edible Flowers from Agastache Genus
Abstract
:1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. Plant Material
3.2. Headspace Trapping for the Floral Set-Up
3.3. Sample Analysis: Isolation of VOCs
3.4. Extraction of Essential Oils
3.5. GC-MS Analysis
3.6. Identification of VOCs and EO Composition
3.7. Determination of Secondary Metabolites, Ascorbic Acid and Radical Scavenging Activity (DPPH Assay)
3.8. Sugars Quantification
3.9. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kantsa, A.; Sotiropoulou, S.; Vaitis, M.; Petanidou, T. Plant Volatilome in Greece: A Review on the Properties, Prospects, and Chemogeography. Chem. Biodivers. 2015, 12, 1466–1480. [Google Scholar] [CrossRef]
- Misra, B.B. Plant volatilome resources. Curr. Metab. 2016, 4, 148–150. [Google Scholar] [CrossRef]
- Ahmadian, M.; Ahmadi, N.; Babaei, A.; Naghavi, M.R.; Ayyari, M. Comparison of volatile compounds at various developmental stages of tuberose (Polianthes tuberosa l. cv. mahallati) flower with different extraction methods. J. Essent. Oil Res. 2018, 30, 197–206. [Google Scholar] [CrossRef]
- Bicchi, C.; Maffei, M. The Plant Volatilome: Methods of Analysis. In High-Throughput Phenotyping in Plants: Methods and Protocols, Methods in Molecular Biology; Normanly, J., Ed.; Humana Press: Totowa, NJ, USA, 2012; Chapter 15; Volume 918, pp. 289–310. [Google Scholar] [CrossRef]
- Boiteux, J.; Monardez, C.; Fernández, M.; de los, Á.; Espino, M.; Pizzuolo, P.; Silva, M.F. Larrea divaricata volatilome and antimicrobial activity against Monilinia fructicola. Microchem. J. 2018, 142, 1–8. [Google Scholar] [CrossRef]
- Paul, I.; Goyal, R.; Bhadoria, P.S.; Mitra, A. Developing efficient methods for unravelling headspace flora volatilome in Murraya paniculate for understanding ecological interactions. In Application of Biotechnology for Sustainable Development; Springer: Singaopre, 2017; pp. 73–79. [Google Scholar]
- Longo, V.; Forleo, A.; Provenzano, S.P.; Coppola, L.; Zara, V.; Ferramosca, A.; Siciliano, P.; Capone, S. HS-SPME-GC-MS metabolomics approach for sperm quality evaluation by semen volatile organic compounds (VOCs) analysis. Biomed. Phys. Eng. Express 2019, 5, 015006. [Google Scholar] [CrossRef]
- Wong, Y.F.; Yan, D.D.; Shellie, R.A.; Sciarrone, D.; Marriott, P.J. Rapid plant volatiles screening using headspace SPME and person-portable Gas Chromatography–Mass Spectrometry. Chromatographia 2019, 82, 297–305. [Google Scholar] [CrossRef]
- Bueno, M.; Resconi, V.C.; Campo, M.M.; Ferreira, V.; Escudero, A. Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chem. 2019, 281, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeleń, H.H.; Majcher, M.; Dziadas, M. Microextraction techniques in the analysis of food flavor compounds: A review. Anal. Chim. Acta 2012, 738, 13–26. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.; Fritsche, J. Recent developments and applications of Solid Phase Microextraction (SPME) in food and environmental analysis—A Review. Chromatography 2015, 2, 293–381. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.; Saraiva, J.A.; Pereira, J.A.; Casal, S.; Ramalhosa, E. Post-harvest technologies applied to edible flowers: A review: Edible flowers preservation. Food Rev. Int. 2019, 35, 132–154. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Edible flowers: A review of the nutritional, antioxidant, antimicrobial properties and effects on human health. J. Food Compos. Anal. 2017, 60, 38–50. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Yin, R. Phytochemical content, health benefits, and toxicology of common edible flowers: A Review (2000–2015). Crit. Rev. Food Sci. Nutr. 2016, 56, S130–S148. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczuk, M.; Stefaniak, A.; Meller, E.; Wysocka, G. Mineral composition of some edible flowers. J. Elementol. 2018, 23, 151–162. [Google Scholar] [CrossRef]
- Tokalıoğlu, Ş. Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem. 2012, 134, 2504–2508. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers—A new promising source of mineral elements in human nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef]
- Amorello, D.; Orecchio, S.; Pace, A.; Barreca, S. Discrimination of almonds (Prunus dulcis) geographical origin by minerals and fatty acids profiling. Nat. Prod. Res. 2016, 30, 2107–2110. [Google Scholar] [CrossRef]
- Fernandes, L.; Ramalhosa, E.; Pereira, J.A.; Saraiva, J.A.; Casal, S. The unexplored potential of edible flowers lipids. Agriculture 2018, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Grzeszczuk, M.; Stefaniak, A.; Pachlowska, A. Biological value of various edible flower species. Acta Sci. Pol. Hortorum 2016, 15, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.K. Lavandula angustifolia. In Edible Medicinal and Non Medicinal Plants: Volume 8, Flowers; Springer: Dordrecht, The Netherlands, 2014; pp. 156–185. [Google Scholar] [CrossRef]
- Zielińska, S.; Matkowski, A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochem. Rev. 2014, 13, 391–416. [Google Scholar] [CrossRef] [Green Version]
- Fuentes-Granados, R.; Widrlechner, M.P.; Wilson, L.A. An overview of Agastache research. J. Herbs Spices Med. Plants 1998, 6, 69–97. [Google Scholar] [CrossRef]
- Husti, A.; Cantor, M.; Buta, E.; Horţ, D. Current Trends of Using Ornamental Plants in Culinary Arts. ProEnvironment/ProMediu 2013, 6, 52–58. [Google Scholar]
- Myadelets, M.A.; Vorobyeva, T.A.; Domrachev, D.V. Composition of the essential oils of some species belonging to genus Agastache Clayton ex Gronov (Lamiaceae) cultivated under the conditions of the middle Ural. Chem. Sustain. Dev. 2013, 21, 397–401. [Google Scholar]
- Ayres, G.S.; Widrlechner, M.P. The Genus Agastache as bee forage: A historical perspective. Am. Bee J. 1994, 134, 341–348. [Google Scholar]
- Chen, N.-H.; Wei, S. Factors influencing consumers’ attitudes towards the consumption of edible flowers. Food Qual. Prefer. 2017, 56, 93–100. [Google Scholar] [CrossRef]
- Wilson, L.A.; Widrlechner, M.P.; Senechal, N.P. Headspace analysis of the volatile oils of Agastache. J. Agric. Food Chem. 1992, 40, 1362–1366. [Google Scholar] [CrossRef] [Green Version]
- Yamani, H.; Mantri, N.; Morrison, P.D.; Pang, E. Analysis of the volatile organic compounds from leaves, flower spikes, and nectar of Australian grown Agastache rugosa. BMC Complement. Altern. Med. 2014, 14, 495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsharif, S.A.; Buettner, A. Structure-odor relationship study on geraniol, nerol, and their synthesized oxygenated derivatives. J. Agric. Food Chem. 2016, 66, 2324–2333. [Google Scholar] [CrossRef]
- Kim, T.A.; Shin, H.J.; Baek, H.H.; Lee, H.J. Volatile flavour compounds in suspension culture of Agastache rugosa Kuntze (Korean mint). J. Sci. Food Agric. 2001, 81, 569–575. [Google Scholar] [CrossRef]
- Estrada-Reyes, R.; Aguirre Hernández, E.; García-Argáez, A.; Soto Hernández, M.; Linares, E.; Bye, R.; Heinze, G.; Martínez-Vázquez, M. Comparative chemical composition of Agastache mexicana subsp. mexicana and A. mexicana subsp. xolocotziana. Biochem. Syst. Ecol. 2004, 32, 685–694. [Google Scholar] [CrossRef]
- Kovalenko, N.A.; Supichenko, G.N.; Ahramovich, T.I.; Shutova, A.G.; Leontiev, V.N. Antibacterial activity of Agastache aurantiaca essential oils. Khimiya Rastit. Syr’ya 2018, 2, 63–70. [Google Scholar] [CrossRef]
- Svoboda, K.P.; Gough, J.; Hampson, J.; Galambosi, B. Analysis of the essential oils of some Agastache species grown in Scotland from various seed sources. Flavour Fragr. J. 1995, 10, 139–145. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Vrancheva, R.Z.; Petkova, N.T.; Tumbarski, Y.; Dincheva, I.N.; Badjakov, I.K. Phytochemical compounds of anise hyssop (Agastache foeniculum) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. J. Appl. Pharm. Sci. 2019, 9, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Mo, J.; Ma, L. Volatile oil of Herba Agastache in various growth periods and different parts by GC-MS. Chin. J. Pharm. 2011, 4. [Google Scholar]
- Božović, M.; Ragno, R.; Tzakou, O. Calamintha nepeta (L.) Savi and its main essential oil constituent pulegone: Biological activities and chemistry. Molecules 2017, 22, 290. [Google Scholar] [CrossRef]
- Zárybnický, T.; Matoušková, P.; Lancošová, B.; Šubrt, Z.; Skálová, L.; Boušová, I. Inter-individual variability in acute toxicity of R-pulegone and R-menthofuran in human liver slices and their influence on miRNA expression changes in comparison to acetaminophen. Int. J. Mol. Sci. 2018, 19, 1805. [Google Scholar] [CrossRef] [Green Version]
- Shtereva, L.; Vassilevska-Ivanova, R.; Stancheva, I.; Geneva, M.; Stoyanova, E. Evaluation of antioxidant activity of Agastache foeniculum and Agastache rugosa extracts. C. R. l’Académie Bulg. Sci. 2016, 69, 295–302. [Google Scholar]
- Li, A.-N.; Lia, S.; Lia, H.-B.; Xua, D.-P.; Xub, X.-R.; Chen, F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods 2014, 6, 319–330. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A. Anti-Hyperglycemic and Anticholinergic Effects of Natural Antioxidant Contents in Edible Flowers. Antioxidants 2019, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Park, W.T.; Kim, H.H.; Chae, S.C.; Cho, J.W.; Park, S.U. Phenylpropanoids in Agastache foeniculum and Its Cultivar A. foeniculum ‘Golden Jubilee’. Asian J. Chem. 2014, 26, 4599–4601. [Google Scholar] [CrossRef]
- Zielińska, S.; Kolniak-Ostek, J.; Dziadas, M.; Oszmiański, J.; Matkowski, A. Characterization of polyphenols in Agastache rugosa leaves and inflorescences by UPLC-qTOF-MS following FCPC separation. J. Liq. Chromatogr. Relat. Technol. 2016, 39, 209–219. [Google Scholar] [CrossRef]
- Gonzalez-Trujano, M.E.; Ventura-Martinez, R.; Chavez, M.; Diaz-Reval, I.; Pellicer, F. Spasmolytic and antinociceptive activities of ursolic acid and acacetin identified in Agastache mexicana. Planta Med. 2013, 78, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Abreu, O.; Duran-Gomez, L.; Best-Brown, R.; Villalobos-Molina, R.; Rivera-Leyva, J.; Estrada-Soto, S. Validated liquid chromatographic method and analysis of content of tilianin on several extracts obtained from Agastache mexicana and its correlation with vasorelaxant effect. J. Ethnopharmacol. 2011, 138, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Ohmiya, A.; Tanase, K.; Hirashima, M.A.; Yamamizo, C.; Yagi, M. Analysis of carotenogenic gene expression in petals and leaves of carnation (Dianthus caryophyllus L.). Plant Breed. 2013, 132, 423–429. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Baskar, T.B.; Park, Y.E.; Park, J.S.; Lee, S.Y.; Park, S.U. In Vitro Antioxidant and Antimicrobial Properties of Flower, Leaf, and Stem Extracts of Korean Mint. Antioxidants 2019, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Tullio, M.C. The Mystery of Vitamin C. Nat. Educ. 2010, 3, 48. [Google Scholar]
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. In Daily Reference Intakes for Vitamins and Minerals (Adults); Annex XII; European Union: Bruxelles, Belgium, 22 November 2011.
- Anand, S.; Deighton, M.; Livanos, G.; Morrison, P.D.; Pang, E.C.K.; Mantri, N. Antimicrobial activity of Agastache honey and characterization of its bioactive compounds in comparison with important commercial honeys. Front. Microbiol. 2019, 10, 263. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants—A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- NIST 14/EPA/NIH Mass Spectra Library; I. Willy and Sous, Inc.: Hoboken, NJ, USA, 2014.
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Food/Nahrung; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976. [Google Scholar]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes, Aldrich Chemical Company; Aldrich Chemical Company: Milwaukee, WI, USA, 1981. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Marchioni, I.; Pistelli La Ferri, B.; Cioni, P.L.; Copetta, A.; Pistelli Lu Ruffoni, B. Preliminary studies on edible saffron bio-residues during different post-harvest storages. Bulg. Chem. Commun. 2019, 51, 131–136. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kampfenkel, K.; Montagu, M.V.; Inzé, D. Extraction and determination of ascorbate e dehydroascorbate from plant tissue. Anal. Chem. 1995, 225, 165–167. [Google Scholar] [CrossRef] [PubMed]
- Degl’innocenti, E.; Guidi, L.; Pardossi, A.; Tognoni, F. Biochemical Study of Leaf Browning in Minimally Processed Leaves of Lettuce (Lactuca sativa L. Var. Acephala. J. Agric. Food Chem. 2005, 53, 9980–9984. [Google Scholar] [CrossRef] [PubMed]
- Das, B.K.; Choudhury, B.K.; Kar, M. Quantitative estimation of changes in biochemical constituents of mahua (Madhuca indica syn. Bassia latifolia) flowers during postharvest storage. J. Food Process. Preserv. 2010, 34, 831–844. [Google Scholar] [CrossRef]
- Tobias, R.B.; Boyer, C.D.; Shannon, J.C. Alterations in Carbohydrate Intermediates in the Endosperm of Starch-Deficient Maize (Zea mays L.) Genotypes. Plant Physiol. 1992, 99, 146–152. [Google Scholar] [CrossRef]
Sample Availability: Samples of the plant material Agastache ‘Blue Boa’, A. aurantiaca ‘Sunset Yellow’, A. mexicana ‘Sangria’ and A.; Arcado Pink’) are available at Research Centre for Vegetable and Ornamental Crops (CREA, Sanremo, Imperia, Italy, GPS: 43.816887, 7.758900. |
Plant Name | Plant Height | Leaves | Flowers | Blossoming Period | |
---|---|---|---|---|---|
A. ‘Arcado Pink’ | 60–70 cm | Medium, opposite, lanceolate, serrated, green/gray color | Purplish/pink in compact ears | May–October | |
A. aurantiaca (A. Gray) Lint & Epling, var. ‘Sunset Yellow’ | 35–40 cm | Small, opposite, lanceolate, serrated, green/gray color | Golden yellow in very loose ears | May–November | |
A.‘Blue Boa’ | 60–70 cm | Medium, opposite, lanceolate, serrated, green/gray color | Dark blue/purple in loose ears | June–October | |
A. mexicana (Kunth) Lint & Epling | 100–120 cm | Large, opposite, lanceolate, serrated, green/gray color | Purple red in very loose ears | June–November |
SPME | EO | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds * | Class | LRI | LRI * | A.A.P. | A.A. | A.B.B. | A.M. | A.A.P. | A.A. | A.B.B. | A.M. | |
Relative Percentage | ||||||||||||
1 | Furfural | nt | 818 | 836 | - | - | - | - | 0.2 ± 0.08 | - | - | - |
2 | 1-Octen-3-ol | nt | 979 | 979 | - | - | 0.1 ± 0.07 | - | - | 0.1 ± 0.01 | 0.2 ± 0.00 | - |
3 | β-Pinene | mh | 981 | 979 | 0.1 ± 0.14 | - | - | - | - | - | - | - |
4 | 3-Octanone | nt | 986 | 984 | - | 0.1 ± 0.04 | 0.2 ± 0.00 | - | - | - | - | - |
5 | Myrcene | mh | 991 | 991 | 3.5 ± 0.21 | 0.4 ± 0.07 | 0.3 ± 0.21 | 3.7 ± 0.24 | - | 0.1 ± 0.01 | - | - |
6 | p-Cymene | mh | 1025 | 1025 | - | - | 0.3 ± 007 | - | - | - | - | - |
7 | Limonene | mh | 1030 | 1029 | 17.1 ± 1.70 | 2.4 ± 0.99 | 3.6 ± 0.85 | 0.8 ± 0.10 | - | 0.5 ± 0.10 | 0.6 ± 0.14 | - |
8 | cis-β-Ocimene | mh | 1038 | 1037 | 0.6 ± 0.05 | - | - | 0.8 ± 0.15 | - | - | - | - |
9 | trans-β-Ocimene | mh | 1047 | 1050 | 1.0 ± 0.4 | - | - | 1.3 ± 0.10 | - | - | - | - |
10 | p-Menta-2,4(8)-diene | mh | 1086 | 1088 | 0.3 ± 0.14 | - | - | - | - | - | - | - |
11 | p-Cymenene | mh | 1090 | 1091 | - | - | 0.1 ± 0.07 | - | - | - | - | - |
12 | Linalool | om | 1099 | 1097 | - | - | - | 1.5 ± 0.33 | - | - | - | 0.5 ± 0.14 |
13 | trans-p-Mentha-2,8-dienol | om | 1116 | 1113 $ | - | - | - | - | 2.5 ± 0.06 | - | 0.3 ± 0.07 | - |
14 | 1,3,8-p-Menthatriene | mh | 1119 | 1110 | 0.1 ± 0.04 | - | 0.1 ± 0.40 | - | - | - | - | - |
15 | trans-p-Metha-2,8-dien-1-ol | om | 1123 | 1123 | - | - | - | - | 3.1 ± 0.06 | - | - | - |
16 | p-Mentha,1,5,8-triene | mh | 1130 | 1135 $ | 0.1 ± 0.04 | - | - | - | - | - | - | - |
17 | Neo-allo-ocimene | mh | 1131 | 1132 | 0.4 ± 0.09 | - | - | - | - | - | - | - |
18 | cis-p-Mentha-2,8-dien-1-ol | om | 1138 | 1138 | - | - | - | - | - | - | 0.2 ± 0.07 | - |
19 | Citronellal | om | 1153 | 1153 | - | - | - | - | - | - | - | 1.2 ± 0.14 |
20 | Menthone | om | 1154 | 1153 | - | 4.7 ± 0.35 | 0.4 ± 0.35 | - | 0.4 ± 0.07 | 1.4 ± 0.10 | 0.1 ± 0.00 | - |
21 | iso-Menthone | om | 1164 | 1163 | - | - | - | - | - | 0.1 ± 0.01 | 1.1 ± 0.07 | - |
22 | Menthofuran | om | 1165 | 1164 | 0.5 ± 0.07 | 1.5 ± 0.64 | 2.8 ± 1.06 | - | - | - | - | - |
23 | Borneol | om | 1169 | 1169 | - | - | - | - | - | - | - | 0.1 ± 0.00 |
24 | isoPulegone | om | 1177 | 1179 $ | 1.1 ± 0.42 | 1.9 ± 0.07 | 2.6 ± 0.92 | 0.1 ± 0.03 | 1.1 ± 0.0 | 2.6 ± 0.20 | 2.1 ± 0.21 | - |
25 | α-Terpineol | om | 1189 | 1189 | - | - | - | - | 0.7 ± 0.08 | 0.1 ± 0.04 | - | - |
26 | Verbenone | om | 1204 | 1205 | - | - | - | - | - | 0.1 ± 0.10 | - | - |
27 | 2,6,6-trimethyl,2-Cyclohexen-1-ol | nt | 1205 | 1205 $ | - | - | - | - | 0.4 ± 0.09 | - | - | - |
28 | n-Decanal | nt | 1206 | 1202 | - | - | - | 0.2 ± 0.09 | - | - | - | - |
29 | 4,7-dimethyl, Benzofuran | pp | 1220 | 1220 $ | - | - | 0.3 ± 0.05 | - | - | - | - | - |
30 | Citronellol | om | 1228 | 1226 | - | - | - | 6.2 ± 1.48 | - | - | - | 3.1 ± 0.35 |
31 | Pulegone | om | 1237 | 1237 | 36.5 ± 1,27 | 77.7 ± 0.42 | 84.0 ± 5.30 | - | 79.8 ± 2.15 | 92.5 ± 0.80 | 91.8 ± 0.71 | - |
32 | β-Citral (Neral) | om | 1240 | 1238 | - | - | - | 3.8 ± 0.30 | - | - | - | 2.9 ± 0.14 |
33 | 2-methyl-3-phenyl, Propanal | nt | 1244 | 1244 $ | - | - | - | - | - | 0.2 ± 0.10 | - | - |
34 | Piperitone | om | 1252 | 1253 | - | - | - | - | - | 0.2 ± 0.11 | - | - |
35 | Geraniol | om | 1255 | 1253 | - | - | - | 16.0 ± 1.86 | - | - | - | 8.3 ± 0.49 |
36 | α-Citral (Geranial) | om | 1270 | 1267 | - | - | - | 17.0 ± 1.56 | - | - | - | 11.0 ± 0.07 |
37 | isoBornyl acetate | om | 1286 | 1286 | 0.2 ± 0.14 | - | - | 1.2 ± 0.14 | - | - | - | 1.1 ± 0.07 |
38 | Carvyl acetate | om | 1336 | 1335 $ | - | - | 0.7 ± 0.57 | - | - | - | - | - |
39 | trans-Carvyl acetate | om | 1337 | 1342 | 0.3 ± 0.07 | - | - | - | - | - | 0.1 ± 0.00 | - |
40 | Piperitenone | om | 1340 | 1343 | - | 0.1 ± 0.07 | 0.1 ± 0.02 | - | 1.0 ± 0.04 | 0.5 ± 0.20 | 0.6 ± 0.07 | - |
41 | α-Cubebene | sh | 1351 | 1351 | 0.1 ± 0.00 | - | - | - | - | - | - | - |
42 | Citronellyl acetate | om | 1354 | 1353 | - | - | - | 2.6 ± 0.56 | - | - | - | 4.2 ± 0.07 |
43 | Neryl acetate | om | 1364 | 1362 | - | - | - | 1.6 ± 0.17 | - | - | - | 3.0 ± 0.00 |
44 | Geranyl acetate | om | 1381 | 1381 | - | - | - | 37.5 ± 3.78 | - | - | - | 61.4 ± 2.40 |
45 | α-Bourbonene | sh | 1384 | 1384 $ | 0.3 ± 0.07 | - | - | - | - | - | - | - |
46 | β-Elemene | sh | 1391 | 1391 | 0.7 ± 0.35 | - | - | - | - | - | - | - |
47 | Methyl eugenol | om | 1402 | 1404 | - | - | - | 2.0 ± 0.76 | - | - | - | 1.1 ± 0.00 |
48 | β-Caryophyllene | sh | 1419 | 1419 | 20.4 ± 1.27 | 8.9 ± 1.06 | 2.5 ± 1.34 | 2.7 ± 0.96 | 1.8 ± 0.06 | 0.6 ± 0.10 | 0.3 ± 0.00 | 0.5 ± 0.00 |
49 | β-copaene | sh | 1432 | 1432 | 0.6 ± 0.35 | - | - | - | - | - | - | - |
50 | isoGermacrene D | sh | 1448 | - | 0.2 ± 0.01 | - | - | - | - | - | - | - |
51 | cis-muurola-4(14),5-diene | sh | 1450 | 1467 | 0.3 ± 0.00 | - | - | - | - | - | - | - |
52 | α-Humulene | sh | 1454 | 1455 | 2.5 ± 0.07 | 0.9 ± 0.28 | 0.1 ± 0.07 | - | 0.3 ± 0.05 | 0.1 ± 0.08 | - | - |
53 | (E)-β-Farnesene | sh | 1457 | 1457 | - | 0.5 ± 0.40 | - | - | - | 0.1 ± 0.05 | - | - |
54 | cis-Muurola-4(15),5-diene | sh | 1463 | 1459 $ | 0.1 ± 0.10 | - | - | - | - | - | - | - |
55 | Germacrene D | sh | 1481 | 1485 | 10.9 ± 2,26 | 0.9 ± 0.57 | 1.1 ± 0.13 | - | 4.2 ± 1.04 | 0.3 ± 0.12 | 0.4 ± 0.00 | - |
56 | Valencene | sh | 1492 | 1496 | 0.1 ± 0.07 | - | - | - | - | - | - | - |
57 | Bicyclogermacrene | sh | 1500 | 1500 | 0.1 ± 0.02 | - | 0.4 ± 0.08 | - | - | - | 0.2 ± 0.07 | - |
58 | α-Farnesene | sh | 1508 | 1509 $ | 0.5 ± 0.05 | - | 0.1 ± 0.05 | - | - | - | - | - |
59 | γ-Cadinene | sh | 1513 | 1514 | 0.4 ± 0.07 | - | - | - | - | - | - | - |
60 | δ-Cadinene | sh | 1524 | 1523 | 0.6 ± 0.14 | - | - | - | - | - | - | - |
61 | α-Cadinene | sh | 1532 | 1536 | 0.1 ± 0.07 | - | - | - | - | - | - | - |
62 | Germacrene D-4-ol | os | 1574 | 1576 | 0.1 ± 0.04 | - | - | - | 3.9 ± 0.52 | 0.2 ± 0.12 | 0.1 ± 0.00 | - |
63 | Viridiflorol | os | 1591 | 1593 | - | - | - | - | - | 0.3 ± 0.00 | 1.8 ± 0.07 | - |
64 | Dodecyl acetate | nt | 1609 | 1610 $ | - | - | - | 0.2 ± 0.06 | - | - | - | - |
65 | n-Tetracosane | nt | 2400 | 2400 | - | - | - | - | - | - | - | 0.5 ± 0.42 |
66 | n-Pentacosane | nt | 2500 | 2500 | - | - | - | - | - | - | - | 1.1 ± 0.49 |
Unknown | 0.2 ± 0.05 | 0.0 ± 0.00 | 0.2 ± 0.03 | 0.8 ± 0.19 | 0.6 ± 0.07 | 0.0 ± 0.0 | 0.1 ± 0.07 | 0.0 ± 0.00 | ||||
SPME | EO | |||||||||||
Class of Compounds | A.A.P. | A.A. | A.B.B. | A.M. | A.A.P. | A.A. | A.B.B. | A.M. | ||||
Monoterpene Hydrocarbons (mh) | 23.2 ± 1.13 | 2.8 ± 0.92 | 4.4 ± 1.34 | 6.6 ± 0.56 | - | 0.6 ± 0.10 | 0.6 ± 0.14 | - | ||||
Oxygenated Monoterpenes (om) | 38.6 ± 1.98 | 85.9 ± 1.41 | 90.6 ± 4.03 | 89.5 ± 4.96 | 88.6 ± 3.29 | 97.5 ± 0.21 | 96.3 ± 0.21 | 97.9 ± 0.92 | ||||
Sesquiterpene Hydrocarbons (sh) | 37.9 ± 2.90 | 11.2 ± 2.33 | 4.2 ± 0.97 | 2.7 ± | 6.3 ± 0.89 | 1.1 ± 0.00 | 0.9 ± 0.07 | 0.5 ± 0.00 | ||||
Oxygenated Sesquiterpenes (os) | 0.1 ± 0.04 | - | - | - | 3.9 ± 0.52 | 0.5 ± 0.00 | 1.9 ± 0.07 | - | ||||
Penylpropanoids (pp) | - | - | 0.3 ± 0.05 | - | - | - | - | - | ||||
Non-terpene Derivatives (nt) | - | 0.1 ± 0.04 | 0.3 ± 0.07 | 0.4 ± 0.02 | 0.6 ± 0.08 | 0.3 ± 0.07 | 0.2 ± 0.00 | 1.6 ± 0.09 | ||||
Total Identified | 99.8 ± 0.21 | 100.0 ± 0.00 | 99.8 ± 0.42 | 99.2 ± 0.35 | 99.4 ± 3.82 | 100.0 ± 0.00 | 99.9 ± 0.02 | 100.0 ± 0.00 |
Parameters | A. aurantiaca | A. ‘Arcado Pink’ | A. ‘Blue Boa’ | A. mexicana |
---|---|---|---|---|
TPC (mg GAE/g FW) | 5.37 ± 0.32 b | 7.10 ± 0.25 a | 7.34 ± 0.19 a | 5.29 ± 0.20 b |
TF (mg CE/g FW) | 3.04 ± 0.28 b | 5.57 ± 0.27 a | 4.96 ± 0.19 a | 3.52 ± 0.18 b |
TA (mg ME/g FW) | 0.03 ± 0.00 c | 0.17 ± 0.02 b | 0.18 ± 0.01 b | 0.68 ± 0.02 a |
Carotenoids (µg/g FW) | 198.57 ± 8.82 a | 1.95 ± 0.60 b | 11.71 ± 0.40 b | 8.69 ± 0.89 b |
Reduced ascorbic acid (mg AsA/100 g FW) | 1.48 ± 0.06 a | 0.79 ± 0.02 b | 1.27 ± 0.10 a | 1.43 ± 0.08 a |
Total ascorbic acid (mg AsATOT/100 g FW) | 1.87 ± 0.16 b | 1.12 ± 0.02 c | 3.06 ± 0.26 a | 2.11 ± 0.04 a |
DPPH radical scavenging assay (IC50 mg/mL) | 2.26 ± 0.15 a | 1.43 ± 0.04 b | 0.86 ± 0.01 b | 1.40 ± 0.05 c |
Total soluble sugars (mg/g FW) | 104.44 ± 2.84 a | 56.41 ± 0.67 c | 75.81 ± 0.66 b | 57.52 ± 0.64 c |
d-Glucose (mg/g FW) | 16.14 ± 0.67 a | 8.13 ± 0.19 b | 9.15 ± 0.53 b | 6.79 ± 0.32 b |
Sucrose (mg/g FW) | 17.65 ± 0.44 a | 4.53 ± 0.35 b | 3.51 ± 0.34 b | 2.99 ± 0.20 c |
d- Fructose (mg/g FW) | 13.25 ± 0.28 a | 7.00 ± 0.17 b | 6.49 ± 0.25 b | 4.92 ± 0.38 c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najar, B.; Marchioni, I.; Ruffoni, B.; Copetta, A.; Pistelli, L.; Pistelli, L. Volatilomic Analysis of Four Edible Flowers from Agastache Genus. Molecules 2019, 24, 4480. https://doi.org/10.3390/molecules24244480
Najar B, Marchioni I, Ruffoni B, Copetta A, Pistelli L, Pistelli L. Volatilomic Analysis of Four Edible Flowers from Agastache Genus. Molecules. 2019; 24(24):4480. https://doi.org/10.3390/molecules24244480
Chicago/Turabian StyleNajar, Basma, Ilaria Marchioni, Barbara Ruffoni, Andrea Copetta, Laura Pistelli, and Luisa Pistelli. 2019. "Volatilomic Analysis of Four Edible Flowers from Agastache Genus" Molecules 24, no. 24: 4480. https://doi.org/10.3390/molecules24244480
APA StyleNajar, B., Marchioni, I., Ruffoni, B., Copetta, A., Pistelli, L., & Pistelli, L. (2019). Volatilomic Analysis of Four Edible Flowers from Agastache Genus. Molecules, 24(24), 4480. https://doi.org/10.3390/molecules24244480