Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery
Abstract
:1. Introduction
2. Material and Methods
2.1. Inoculum and Substrate Pretreatment
2.2. Experimental Set up
2.3. Analytical Methods
2.4. DNA Extraction
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Starvation on Reactor Performance
3.1.1. Reactors Performance: VFAs Yields and Profiles
3.1.2. Microbial Population Dynamics
3.2. Recovery Strategy: OLR Increase
3.2.1. Reactors Performance VFAs Yields and Profiles during Fermenter Recovery
3.2.2. Microbial Population Dynamics during Fermenter Recovery
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data accessibility
References
- Sawatdeenarunat, C.; Nguyen, D.; Surendra, K.C.; Shrestha, S.; Rajendran, K.; Oechsner, H.; Xie, L.; Khanal, S.K. Anaerobic biorefinery: Current status, challenges, and opportunities. Bioresour. Technol. 2016, 215, 304–313. [Google Scholar] [CrossRef]
- Lee, W.S.; Chua, A.S.M.; Yeoh, H.K.; Ngoh, G.C. A review of the production and applications of waste-derived volatile fatty acids. Chem. Eng. J. 2014, 235, 83–99. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, R. Performance evaluation of semi continuous vertical flow constructed wetlands (SC-VF-CWs) for municipal wastewater treatment. Bioresour. Technol. 2017, 232, 321–330. [Google Scholar] [CrossRef]
- Fotidis, I.A.; Karakashev, D.; Angelidaki, I. The dominant acetate degradation pathway/methanogenic composition in full-scale anaerobic digesters operating under different ammonia levels. Int. J. Environ. Sci. Technol. 2014, 11, 2087–2094. [Google Scholar] [CrossRef] [Green Version]
- Hwang, K.; Song, M.; Kim, W.; Kim, N.; Hwang, S. Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater. Bioresour. Technol. 2010, 101, S2–S6. [Google Scholar] [CrossRef]
- Mahdy, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 2015, 158, 35–41. [Google Scholar] [CrossRef]
- Ferguson, R.M.W.; Coulon, F.; Villa, R. Organic loading rate: A promising microbial management tool in anaerobic digestion. Water Res. 2016, 100, 348–356. [Google Scholar] [CrossRef] [Green Version]
- De Vrieze, J.; Christiaens, M.E.R.; Walraedt, D.; Devooght, A.; Ijaz, U.Z.; Boon, N. Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water Res. 2017, 111, 109–117. [Google Scholar] [CrossRef]
- Kim, T.G.; Yi, T.; Lee, J.-H.; Cho, K.-S. Long-term survival of methanogens of an anaerobic digestion sludge under starvation and temperature variation. J. Environ. Biol. 2015, 36, 371–375. [Google Scholar]
- de Jonge, N.; Moset, V.; Moller, H.B.; Nielsen, J.L. Microbial population dynamics in continuous anaerobic digester systems during start up, stable conditions and recovery after starvation. Bioresour. Technol. 2017, 232, 313–320. [Google Scholar] [CrossRef]
- Magdalena, J.A.; Llamas, M.; Tomás-Pejó, E.; González-Fernández, C. Semi-Continuous anaerobic digestion of protease pretreated Chlorella Biomass for volatile fatty acids production. J. Chem. Technol. Biotechnol. 2019, 94, 1861–1869. [Google Scholar] [CrossRef]
- Magdalena, J.A.; Tomás-Pejó, E.; Ballesteros, M.; González-Fernandez, C. Volatile fatty acids production from protease pretreated Chlorella biomass via anaerobic digestion. Biotechnol. Prog. 2018, 34, 1363–1369. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Mei, R.; Narihiro, T.; Nobu, M.K.; Kuroda, K.; Liu, W.T. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jabłoński, S.; Rodowicz, P.; Łukaszewicz, M. Methanogenic archaea database containing physiological and biochemical characteristics. Int. J. Syst. Evol. Microbiol. 2015, 65, 1360–1368. [Google Scholar] [CrossRef]
- Cho, K.; Shin, S.G.; Kim, W.; Lee, J.; Lee, C.; Hwang, S. Microbial community shifts in a farm-scale anaerobic digester treating swine waste: Correlations between bacteria communities associated with hydrogenotrophic methanogens and environmental conditions. Sci. Total Environ. 2017, 601–602, 167–176. [Google Scholar] [CrossRef]
- Konopka, A.; Zakharova, T.; Nakatsu, C. Effect of starvation length upon microbial activity in a biomass recycle reactor. J. Ind. Microbiol. Biotechnol. 2002, 29, 286–291. [Google Scholar] [CrossRef]
- Carrero-Colón, M.; Nakatsu, C.H.; Konopka, A. Effect of nutrient periodicity on microbial community dynamics. Appl. Environ. Microbiol. 2006, 72, 3175–3183. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Xia, A.; Liao, Q.; Fu, Q.; Huang, Y.; Zhu, X.; Wei, P.; Lin, R.; Murphy, J.D. Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios. Appl. Energy 2018, 230, 1082–1092. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S.; Han, J.I.; Yang, J.W.; Chang, Y.K.; Ryu, B.G. Carbon balance of major volatile fatty acids (VFAs) in recycling algal residue via a VFA-platform for reproduction of algal biomass. J. Environ. Manag. 2019, 237, 228–234. [Google Scholar] [CrossRef]
- Zamanzadeh, M.; Hagen, L.H.; Svensson, K.; Linjordet, R.; Horn, S.J. Anaerobic digestion of food waste - Effect of recirculation and temperature on performance and microbiology. Water Res. 2016, 96, 246–254. [Google Scholar] [CrossRef]
- Gonzalez-Fernandez, C.; Barreiro-Vescovo, S.; de Godos, I.; Fernandez, M.; Zouhayr, A.; Ballesteros, M. Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnol. Biofuels 2018, 11, 184. [Google Scholar] [CrossRef]
- Sanz, J.L.; Rojas, P.; Morato, A.; Mendez, L.; Ballesteros, M.; González-Fernández, C. Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere 2017, 168, 1013–1021. [Google Scholar] [CrossRef]
- Yenigün, O.; Demirel, B. Ammonia inhibition in anaerobic digestion: A review. Process. Biochem. 2013, 48, 901–911. [Google Scholar] [CrossRef]
- Tejerizo, G.T.; Kim, Y.S.; Maus, I.; Wibberg, D.; Winkler, A.; Off, S.; Pühler, A.; Scherer, P.; Schlüter, A. Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste. J. Biotechnol. 2017, 247, 1–5. [Google Scholar] [CrossRef]
- Lyu, Z.; Lu, Y. Comparative genomics of three Methanocellales strains reveal novel taxonomic andmetabolic features. Environ. Microbiol. Rep. 2015, 7, 526–537. [Google Scholar] [CrossRef]
- Xu, K.; Liu, H.; Chen, J. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. Bioresour. Technol. 2010, 101, 2600–2607. [Google Scholar] [CrossRef]
- Jiang, Y.; Dennehy, C.; Lawlor, P.G.; Hu, Z.; McCabe, M.; Cormican, P.; Zhan, X.; Gardiner, G.E. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. Waste Manag. 2018, 79, 302–311. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Z.; Zhou, Y.; Ng, W.J. The role of hydrogenotrophic methanogens in an acidogenic reactor. Chemosphere 2015, 140, 40–46. [Google Scholar] [CrossRef]
- Atasoy, M.; Eyice, O.; Schnürer, A.; Cetecioglu, Z. Fatty Acids Production via Mixed Culture Fermentation: Revealing the link between pH, inoculum type and bacterial composition. Bioresour. Technol. 2019, 292, 121889. [Google Scholar] [CrossRef]
- Karakashev, D.; Batstone, D.J.; Trably, E.; Angelidaki, I. Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of methanosaetaceae. Appl. Environ. Microbiol. 2006, 72, 5138–5141. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Guo, B.; Zhang, L.; Zhang, Y.; Liu, Y. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. Water Res. 2019, 160, 249–258. [Google Scholar] [CrossRef]
- Mosbaek, F.; Kjeldal, H.; Mulat, D.G.; Albertsen, M.; Ward, A.J.; Feilberg, A.; Nielsen, J.L. Identification of syntrophic acetate-oxidizing bacteria in anaerobic digesters by combined protein-based stable isotope probing and metagenomics. ISME J. 2016, 10, 2405–2418. [Google Scholar] [CrossRef] [Green Version]
- Bareha, Y.; Girault, R.; Jimenez, J.; Trémier, A. Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach. Bioresour. Technol. 2018, 263, 425–436. [Google Scholar] [CrossRef]
- Langer, S.G.; Ahmed, S.; Einfalt, D.; Bengelsdorf, F.R.; Kazda, M. Functionally redundant but dissimilar microbial communities within biogas reactors treating maize silage in co-fermentation with sugar beet silage. Microb. Biotechnol. 2015, 8, 828–836. [Google Scholar] [CrossRef]
Scenario | OLR (g COD/Ld) | %COD Removal | Soluble COD (g COD/L) | VFAs (g COD/L) | COD-VFAs/CODin | NH4+ (g/L) | pH |
---|---|---|---|---|---|---|---|
3B | 3 | 5.1 ± 2.2 | 16.42 ± 0.26 | 11.82 ± 0.96 | 0.39 ± 0.03 | 1.28 ± 0.02 | 6.3 ± 0.1 |
3A | 3 | 32.5 ± 2.7 | 11.12 ± 0.33 | 8.90 ± 0.69 | 0.30 ± 0.02 | 0.89 ± 0.02 | 6.1 ± 0.1 |
9R | 9 | 3.3 ± 1.8 | 38.16 ± 0.32 | 27.92 ± 2.90 | 0.39 ± 0.04 | 2.83 ± 0.02 | 6.3 ± 0.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magdalena, J.A.; Tomás-Pejó, E.; González-Fernández, C. Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery. Molecules 2019, 24, 4544. https://doi.org/10.3390/molecules24244544
Magdalena JA, Tomás-Pejó E, González-Fernández C. Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery. Molecules. 2019; 24(24):4544. https://doi.org/10.3390/molecules24244544
Chicago/Turabian StyleMagdalena, Jose Antonio, Elia Tomás-Pejó, and Cristina González-Fernández. 2019. "Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery" Molecules 24, no. 24: 4544. https://doi.org/10.3390/molecules24244544
APA StyleMagdalena, J. A., Tomás-Pejó, E., & González-Fernández, C. (2019). Volatile Fatty Acids Production from Microalgae Biomass: Anaerobic Digester Performance and Population Dynamics during Stable Conditions, Starvation, and Process Recovery. Molecules, 24(24), 4544. https://doi.org/10.3390/molecules24244544