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Abstract: Porous organic cages (POCs) have attracted extensive attention due to their unique
structures and tremendous application potential in numerous areas. In this study, an enantioselective
potentiometric sensor composed of a polyvinyl chloride (PVC) membrane electrode modified
with CC3-R POC material was used for the recognition of enantiomers of 2-amino-1-butanol.
After optimisation, the developed sensor exhibited enantioselectivity toward S-2-amino-1-butanol
(log KPot

S,R = −0.98) with acceptable sensitivity, and a near-Nernstian response of 25.8 ± 0.3 mV/decade
within a pH range of 6.0–9.0.

Keywords: enantioselective potentiometric sensor; 2-amino-1-butanol; chiral porous organic cage;
CC3-R; PVC membrane electrode

1. Introduction

Chirality is a general phenomenon and an important characteristic in naturally occurring
molecules. For instance, most amino acids are levorotatory and sugars are dextrorotatory in biological
systems. Consequently, chiral discrimination has attracted tremendous attention on account of its
significance in pharmaceutical, biomedicine and chemical fields. Currently, chiral discrimination can
be precisely achieved in many ways including gas chromatography (GC), high-performance liquid
chromatography (HPLC) and high-performance capillary electrophoresis (HPCE). Although these
methods have different advantages in terms of sensitivity or applicability, they suffer similar drawbacks
including complicated operation and the need for expensive equipment. By contrast, ion-selective
electrodes are simple, rapid and affordable, and have been widely applied to the enantioselective
recognition and detection of chiral compounds in recent years [1–9].

As versatile functional material platforms, porous organic cages (POCs) have attracted much
attention [10–13], and have been widely applied in various areas such as gas-selective adsorption and
separation [14–17], molecular recognition [18–27], catalysis [28], water treatment [29] and sensing [30].
As shown in Figure 1, the R-type chiral POC CC3-R has an interlinked chiral pore channel structure with
adjacent tetrahedral cages packed together [31,32]. The chiral pore channel structures and cyclohexyl,
imino and phenyl groups of cage molecules constitute a chiral microenvironment comprising a variety
of enantioselective factors including dispersion forces, dipolar interactions and hydrogen bonds [33].
These properties combine to make CC3-R an excellent chiral selector for use in chiral recognition
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methods. Recently, a CC3-R-modified GC stationary phase was developed for the separation of
racemates, and exhibited excellent enantioselectivity [34].Molecules 2018, 23, x FOR PEER REVIEW  2 of 8 
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Figure 1. Schematic diagram of the structure of CC3-R.

2-Amino-1-butanol (Figure 2) is generally used as an intermediate in the synthesis of
pharmaceuticals such as the bacteriostatic antituberculosis agent (S,S)-ethambutol [35–38]. In the
present work, CC3-R was applied as a chiral selector in PVC membrane electrodes, resulting in
impressive enantioselectivity for S-2-amino-1-butanol. Factors influencing the enantioselectivity of the
CC3-R-based membrane electrode, such as the content of CC3-R, the category of plasticiser and the pH
value of analyte solutions, were systematically investigated.
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Figure 2. Molecular structure of 2-amino-1-butanol.

2. Results and Discussion

2.1. Characterisation of the Synthesised CC3-R

The synthesised CC3-R crystals were characterised by Nuclear Magnetic Resonance (NMR),
Powder X-ray diffraction (PXRD) and elemental analysis. As can be seen in Figure 3, the PXRD pattern
of synthesised CC3-R crystals was consistent with the Singlecrystal simulation. Furthermore, CC3-R
retained the same crystallinity and structure whether recrystallised from tetrahydrofuran or rinsed
with water for 48 h, demonstrating excellent stability as chiral selector in the membrane electrode.

Elemental analysis was performed on CC3-R (C72H85N12); calculated = C 77.31, H 7.66, N 15.03;
detected = C 77.08, H 7.76, N 14.88. 1H-NMR (CDCl3) δ = 8.18 (s, 12H, -CH=N-), 7.92 (s, 12H, -Ar-H),
3.36 (m, 12H, -CHN-), 1.86–1.54 (m, 48H, -CH2-) ppm. 13C-NMR (CDCl3) δ = 159.15, 136.64, 129.53,
74.65, 33.02, 24.39 ppm. All characterisation data confirmed that CC3-R was successfully synthesised.
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2.2. Optimisation of Membrane Components

The nature and amount of chiral selector and plasticiser contained in the membrane can strongly
influence the selectivity and sensitivity of the membrane electrode. Consequently, the potential
response characteristics of multiple electrodes with different quantities of CC3-R and three types of
plasticiser (o-NPOE, DOS and DBP) were evaluated.

Figure 4 shows the potential response characteristics of membrane electrodes with different CC3-R
mass percentages. The performance of the membrane electrode improved with increasing CC3-R
content, and the best enantioselectivity toward S-2-amino-1-butanol was achieved with 3% CC3-R
(by weight). However, the enantioselectivity and sensitivity decreased slightly when the amount of
CC3-R reached 4%. It is possible that the PVC membrane becomes saturated, hence the number of
recognition sites does not increase proportionately with the chiral selector. Moreover, excess CC3-R
could affect the ion-exchange capacity of the membrane electrode.
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2.3. Effect of pH on the Electrode

In order to investigate the effect of pH on the response performance of the optimised membrane
electrode, the potential response value of the 2-amino-1-butanol solution (1.0 × 10−3 mol·L−1) was
measured at different pH values (pH 2.0–12.0). As shown in Figure 6, the potential response value
was stable within a pH range of 5.0–9.0. Furthermore, a large difference between the two enantiomers
was observed at pH 9.0. Therefore, pH 9.0 was adopted for measurements using the optimised
membrane electrode.
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2.4. Enantioselectivity Coefficient of the Electrode

Figure 4 shows log KPot
S,R values for membrane electrodes of varying composition. The optimised

membrane electrode containing 3 wt% CC3-R displayed impressive enantioselectivity toward
S-2-amino-1-butanol over R-2-amino-1-butanol (log KPot

S,R = −0.98). By comparison, the CC3-S
(3 wt%) modified membrane electrode showed similar enantioselectivity toward R-2-amino-1-butanol
(log KPot

S,R = −0.94).
Furthermore, the log KPot

S,int value was used to evaluate the enantioselectivity of the optimised
electrode in the presence of interfering ions with a similar configuration to 2-amino-1-butanol [39].
Specifically, the potential values of R/S-2-amino-3-phenyl-1-propanol, R/S-2-amino-3-methyl-1-butanol
and R/S-3-amino-1,2-propanediol (0.1 mol·L−1) were measured, and log KPot

S,int values are shown in Table 1.

Table 1. LogKPot
S,int values of ions potentially interfering with S-2-amino-1-butanol.

Interference Ion LogKPot
S,int

R-2-Amino-1-butanol −0.98
S-2-Amino-3-phenyl-1-propanol −0.59
R-2-Amino-3-phenyl-1-propanol −0.59
S-2-Amino-3-methyl-1-butanol 0.31
R-2-Amino-3-methyl-1-butanol 0.26

S-3-Amino-1,2-propanediol −0.41
R-3-Amino-1,2-propanediol −0.41

As shown in Table 1, the membrane electrode exhibited comparable responses to other alkamines
with similar configurations to 2-amino-1-butanol. Steric hindrance caused by additional organic groups
of other alkamines could impair the recognition performance during ion exchange. The electrode
displayed slight enantioselective recognition of enantiomers of 2-amino-3-methyl-1-butanol, which
have the most similar configuration. However, 2-amino-3-methyl-1-butanol yielded similar potential
response values, and caused significant interference.

2.5. Recognition of Mixing Samples

To further explore the enantioselectivity of the developed membrane electrode, a mixing sample
test was conducted using different molar ratios of S- and R-enantiomers of 2-amino-1-butanol (Figure 7).
The results showed that the potential response values of the mixing solution increased with increasing
proportion of S-2-amino-1-butanol, revealing a clear positive linear correlation between the proportion
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of S-2-amino-1-butanol and potential response values of mixing solutions (0.1 mol·L−1). These results
demonstrate the selective recognition of S-2-amino-1-butanol in the presence of R-2-amino-1-butanol.
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3. Materials and Methods

3.1. Materials

Enantiomers of 2-amino-1-butanol, 2-amino-3-phenyl-1-propanol, 2-amino-3-methyl-1-butanol, and
3-amino-1,2-propanediol were obtained from Aladdin (Shanghai, China). (R,R)-1,2-Diaminocyclohexane
and 1,3,5-triformylbenzene were purchased from Acros (Geel, Belgium). o-Nitrophenyl Octyl Ether
(o-NPOE), dioctyl sebacate (DOS) and dibutyl phthalate (DBP) were obtained from TCI (Tokyo, Japan).
Polyvinyl chloride (PVC) powder and trifluoroacetic acid were purchased from Sigma-Aldrich (St. Louis,
MO, USA). All other reagents were of analytical grade. Deionised water was used to prepare and dilute all
buffer and analyte solutions.

3.2. Synthesis of CC3-R

CC3-R was synthesised using a previously reported method [29]. Briefly, 20 mL dichloromethane
was added dropwise onto 1.0 g 1,3,5-triformylbenzene in a two-necked flask without stirring at
room temperature, and 20 µL trifluoroacetic acid was added as a catalyst. Within minutes, 20 mL
dichloromethane containing 1.0 g (R,R)-1,2-diaminocyclohexane was dripped slowly into the mixture.
After reaction for 72 h at room temperature, white crystals were present on the wall of the flask, which
were filtered and rinsed with ethanol/dichloromethane (95:5 v/v).

3.3. Preparation of Enantioselective Membrane Electrodes

To prepare the PVC membranes, PVC powder, plasticiser (o-NPOE), and CC3-R were added to
3 mL tetrahydrofuran and stirred to form a transparent solution [40]. This was poured onto a glass
sheet and volatilised for 24 h to form a semitransparent film ~0.5 mm thick. The obtained film was
incised into an appropriately sized disc and assembled using a PVC tube, which was subsequently
filled with 0.1 mol·L−1 KCl as an internal reference solution. A silver chloride electrode was applied as
an internal reference electrode, and a saturated calomel electrode was utilised as a reference electrode.
For comparison, a CC3-S-modified membrane electrode was prepared in the same way. The overall
strategy for enantioselective potentiometric sensor fabrication is depicted in Scheme 1.
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measurements were performed during stirring at room temperature. Before measurement, 
membrane electrodes were soaked in S-2-amino-1-butanol solution (1.0 × 10−3 mol·L−1) for 24 h. 

A revised separate solution method was used to calculate the enantioselectivity coefficient 
(logܭௌ,ோ௧) with the following formula: logܭௌ,ோ௧ = ோܧ − ܦௌܧ  

where ER and ES are the potentials of 0.1 mol·L−1 R- and S-2-amino-1-butanol solutions, respectively, 
and D is the slope of the response curve of S-2-amino-1-butanol. 

4. Conclusions 

The chiral porous organic cage CC3-R proved to be a useful chiral selector for the modification 
of PVC membrane electrodes to generate enantioselective potentiometric sensors. The optimised 
membrane electrode containing 3 wt% CC3-R exhibited enantiomeric recognition toward S-2-amino-
1-butanol over R-2-amino-1-butanol (logܭௌ,ோ௧ = −0.98) with acceptable sensitivity, and a near-Nernst 
response of 25.8 ± 0.3 mV/decade toward S-2-amino-1-butanol at pH 9.0. 
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Scheme 1. Schematic illustration of enantioselective potentiometric sensor fabrication.

3.4. Potentiometric Measurement

The direct potentiometric method was applied to measure the potential value of each
S/R-2-amino-1-butanol solution at different molar concentrations (1.0 × 10−6 to 1.0 × 10−1 mol·L−1)
and mixing solution with different molar ratios (S/R = 1:0, 2:1, 1:1, 1:2, and 0:1). A Model
PHS-3C pH meter (Leici, Shanghai, China) was used for potentiometric and pH measurements,
and all potentiometric measurements were performed during stirring at room temperature. Before
measurement, membrane electrodes were soaked in S-2-amino-1-butanol solution (1.0 × 10−3 mol·L−1)
for 24 h.

A revised separate solution method was used to calculate the enantioselectivity coefficient
(log KPot

S,R) with the following formula:

log KPot
S,R =

ER − ES
D

where ER and ES are the potentials of 0.1 mol·L−1 R- and S-2-amino-1-butanol solutions, respectively,
and D is the slope of the response curve of S-2-amino-1-butanol.

4. Conclusions

The chiral porous organic cage CC3-R proved to be a useful chiral selector for the
modification of PVC membrane electrodes to generate enantioselective potentiometric sensors.
The optimised membrane electrode containing 3 wt% CC3-R exhibited enantiomeric recognition
toward S-2-amino-1-butanol over R-2-amino-1-butanol (log KPot

S,R = −0.98) with acceptable sensitivity,
and a near-Nernst response of 25.8 ± 0.3 mV/decade toward S-2-amino-1-butanol at pH 9.0.
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