Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacological evaluation
2.2.1. SAR for Anti-Bacterial Activity
2.2.2. Molecular-Docking Assay on Compound 5d
3. Experimental Section
3.1. Apparatus, Materials, and Analysis Reagents
3.2. Chemistry
General Procedure for the Synthesis of Compounds 4a–m, 5a–d, 6a, and 6b
3.3. Antimicrobial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barrett, J.F. MRSA: status and prospects for therapy? An evaluation of key papers on the topic of MRSA and antibiotic resistance. Expert Opin. Ther. Targets 2004, 8, 515–519. [Google Scholar] [CrossRef]
- Nambiar, S.; Laessig, K.; Toerner, J.; Farley, J.; Cox, E. Antibacterial Drug Development: Challenges, Recent Developments, and Future Considerations. Clin. Pharmacol. Ther. 2014, 96, 147–149. [Google Scholar] [CrossRef]
- Arshad, M.; Bhat, A.R.; Hoi, K.K.; Choi, I.; Athar, F. Synthesis, characterization and antibacterial screening of some novel 1,2,4-triazine derivatives. Chin. Chem. Lett. 2017, 28, 1559–1565. [Google Scholar] [CrossRef]
- Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot. 2013, 66, 571–591. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D.; Wright, G.D. Antibacterial drug discovery in the resistance era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. Antibiotic resistance sweeping developing world. Nature 2014, 509, 141–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spellberg, B.; Shlaes, D. Prioritized current unmet needs for antibacterial therapies. Clin. Pharmacol. Ther. 2014, 96, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Talbot, G.H.; Benjamin, D.K.; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 × ‘20 Progress-development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, 1685–1694. [Google Scholar] [CrossRef] [PubMed]
- Enquist, P.A.; Gylfe, A.; Hägglund, U.; Lindström, P.; Norberg-Scherman, H.; Sundin, C.; Elofsson, M. Derivatives of 8-hydroxyquinoline—Antibacterial agents that target intra- and extracellular Gram-negative pathogens. Bioorg. Med. Chem. Lett. 2012, 22, 3550–3553. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Li, Y.; Wang, W.W.; Zhang, J.; Lin, Y.; Hong, B.; You, X.F.; Song, D.Q.; Wang, Y.C.; Jiang, J.D.; et al. Identification of an anti-Gram-negative bacteria agent disrupting the interaction between LPS transporters LptA and LptC. Int. J. Antimicrob. Agents 2018. [Google Scholar] [CrossRef] [PubMed]
- Fuente, R.D.L.; Sonawane, N.D.; Arumainayagam, D.; Verkman, A.S. Small molecules with antimicrobial activity against E. coli and P. aeruginosa identified by high-throughput screening. Br. J. Pharmacol. 2006, 149, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Wangtrakuldee, P.; Byrd, M.S.; Campos, C.G.; Henderson, M.W.; Zhang, Z.; Clare, M.; Masoudi, A.; Myler, P.J.; Horn, J.R.; Cotter, P.A.; et al. Discovery of Inhibitors of Burkholderia pseudomallei Methionine Aminopeptidase with Antibacterial Activity. ACS Med. Chem. Lett. 2013, 4, 699–703. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 4a–m, 5a–d and 6a–b are available from the authors. |
NO. | R | Staphylococcus epidermidis (MIC a) | Staphylococcus.aureus (MIC) | Enterococci.faecalis (MIC) | Enterococci.faecium (MIC) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ATCC 12228 MSSE b | 12-6 MSSE | ATCC 29213 MSSA c | ATCC 33591 MRSA d | 15 MSSA | 12-28 MSSA | ATCC 29212 VSE e | ATCC 51299 VRE f | ATCC 700221 VRE | 12-3 VSE | ||
1 | 16 (49.4) | 8 (24.7) | 16 (49.4) | 16 (49.4) | 16 (49.4) | 8 (24.7) | 8 (24.7) | 8 (24.7) | 8 (24.7) | 8 (24.7) | |
2 | - | 8 (44.7) | 16 (89.4) | 8 (44.7) | 16 (89.4) | 8 (44.7) | 8 (44.7) | 16 (89.4) | 16 (89.4) | 16 (89.4) | 8 (44.7) |
4a | CH3 | 32 (136) | 32 (136) | 32 (136) | 32 (136) | 32 (136) | 32 (136) | 32 (136) | 32 (136) | 32 (136) | 32 (136) |
4b | CH3CH2CH2- | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) |
4c | (CH3)2CH- | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | >64 (>243) | >64 (>243) | 32 (122) |
4d | CH2=CHCH2- | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 32 (123) | 16 (61.3) |
4e | CH≡CCH2- | 16 (61.8) | 16 (61.8) | 32 (124) | 16 (61.8) | 32 (124) | 32 (124) | 16 (61.8) | 16 (61.8) | 16 (61.8) | 16 (61.8) |
4f | (CH3)2NCH2CH2- | 32 (110) | 32 (110) | 32 (110) | 32 (110) | 32 (110) | 64 (219) | 32 (110) | 32 (110) | 64 (219) | 64 (219) |
4g | CNCH2CH2- | 8 (29.2) | 8 (29.2) | 8 (29.2) | 8 (29.2) | 16 (58.4) | 8 (29.2) | 8 (29.2) | 8 (29.2) | 16 (58.4) | 8 (29.2) |
4h | CH3OCOCH2- | 8 (27.3) | 8 (27.3) | 8 (27.3) | 8 (27.3) | 8 (27.3) | 8 (27.3) | 16 (54.6) | 16 (54.6) | 8 (27.3) | 16 (54.6) |
4i | PhCH2OCOCH2- | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) | >64 (>173) |
4j | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 16 (61.3) | 32 (123) | |
4k | 16 (50.3) | 16 (50.3) | 64 (201) | 64 (201) | 64 (201) | 64 (201) | 32 (101) | 64 (201) | 64 (201) | 64 (201) | |
4l | 64 (201) | 64 (201) | 64 (201) | 64 (201) | 128 (401) | 64 (201) | 64 (201) | 128 (401) | 128 (401) | 128 (401) | |
4m | 64 (184) | 64 (184) | 64 (184) | 64 (184) | 64 (184) | 64 (184) | 64 (184) | >64 (>184) | >64 (>184) | >64 (>184) | |
5a | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 32 (122) | 64 (243) | 32 (122) | 32 (122) | 64 (243) | 64 (243) | |
5b | 16 (57.3) | 16 (57.3) | 16 (57.3) | 16 (57.3) | 16 (57.3) | 16 (57.3) | 16 (57.3) | 16 (57.3) | 16 (57.3) | >128 (>459) | |
5c | 128 (438) | 128 (438) | >128 (>438) | >128 (>438) | >128 (>438) | >128 (>438) | 128 (438) | 128 (438) | 128 (438) | >128 (>438) | |
5d | 4 (7.65) | 16 (30.6) | 4 (7.65) | 8 (15.3) | 4 (7.65) | 4 (7.65) | 8 (7.65) | 16 (15.3) | >128 (>245) | 0.5 (0.956) | |
6a | 128 (263) | 128 (263) | 128 (263) | 128 (263) | 128 (263) | 128 (263) | 128 (263) | 128 (263) | 128 (263) | 128 (263) | |
6b | 128 (222) | 128 (222) | 128 (222) | 128 (222) | 128 (222) | 128 (222) | 128 (222) | 128 (222) | 128 (222) | 128 (222) | |
CPFX | - | 0.125 (0.378) | 0.5 (1.51) | 0.25 (0.755) | 0.25 (0.755) | 0.125 (0.378) | 0.25 (0.755) | 0.5 (1.51) | 0.5 (1.51) | >128 (>387) | 64 (193) |
Microorganism Strains No. | Phenotype | 1 (MIC a) | 2 (MIC) | 4g (MIC) | 4h (MIC) | 5d (MIC) | CPFX (MIC) |
---|---|---|---|---|---|---|---|
Escherichia coli ATCC 25922 | BL b (+)/ESBLs c (−) | 32 (98.8) | 16 (89.4) | 64 (234) | >64 (>218) | 0.25 (0.478) | ≤0.03 (≤0.0906) |
E. coli1515 | BL(+)/ESBLs(−) | 32 (98.8) | 16 (89.4) | >64 (>234) | >64 (>218) | 8 (15.3) | ≤0.03 (≤0.0906) |
Klebsiella pneumoniae ATCC 700603 | ESBLs(+) | >128 (>395) | >64 (>358) | >64 (>234) | >64 (>218) | 8 (15.3) | 0.25 (0.755) |
K. pneumoniae7 | BL(+)/ESBLs(−) | >128 (>395) | >64 (>358) | >64 (>234) | >64 (>218) | 0.5 (0.956) | ≤0.03 (≤0.0906) |
K. pneumoniae2146 | NDM-1 d (+) | >128 (>395) | >128 (>715) | >64 (>234) | >64 (>218) | >128 (>245) | >128 (>388) |
K. pneumoniae12-4 | BL(+)/ESBLs(−) | 128 (395) | >64 (>358) | >64 (>234) | >64 (>218) | 1 (1.91) | ≤0.03 (≤0.0906) |
K. pneumoniae12-8 | ESBLs(+) | 128 (395) | >128 (>715) | >64 (>234) | >64 (>218) | >128 (>245) | 16 (48.3) |
Pseudomonas aeruginosa ATCC 27853 | BL(+) | >128 (>395) | >128 (>715) | >64 (>234) | >64 (>218) | 4 (7.65) | 0.5 (1.51) |
P. aeruginosa PA01 | BL(+) | >128 (>395) | >128 (>715) | >64 (>234) | >64 (>218) | 16 (30.6) | 2 (6.04) |
P. aeruginosa12-16 | BL(+) | >128 (>395) | >128 (>715) | >64 (>234) | >64 (>218) | >128 (>245) | 4 (12.1) |
Acinetobacter calcoacetious ATCC 19606 | BL(+) | 128 (395) | 64 (358) | 32 (117) | 64 (218) | 16 (30.6) | 0.5 (1.51) |
Enterobacter cloacae ATCC 43560 | BL(+) | 128 (395) | 64 (358) | >64 (>234) | >64 (>218) | 8 (15.3) | ≤0.03 (≤0.0906) |
Enterobacter aerogenes ATCC 13048 | BL(+) | 128 (395) | 128 (715) | >64 (>234) | >64 (>218) | >128 (>245) | ≤0.03 (≤0.0906) |
Serratia marcescens ATCC 21074 | BL(+) | >128 (>395) | >128 (>715) | >64 (>234) | >64 (>218) | 1 (1.91) | 0.06 (0.181) |
Morganella morganii ATCC 25830 | BL(+) | >128 (>395) | 64 (358) | >64 (>234) | >64 (>218) | 0.5 (0.956) | ≤0.03 (≤0.0906) |
Providentia rettgeri ATCC 31052 | BL(-) | >128 (>395) | 16 (89.4) | 64 (234) | >64 (>218) | 0.125 (0.239) | ≤0.03 (≤0.0906) |
Proteus vulgaris ATCC 29905 | BL(+) | 128 (395) | 64 (358) | 64 (234) | >64 (>218) | 0.125 (0.239) | ≤0.03 (≤0.0906) |
Proteus mirabilis12-6 | BL(+) | >128 (>395) | 32 (179) | >64 (>234) | >64 (>218) | 64 (122) | 2 (6.04) |
Stenotrophomonas maltoph.ATCC 13636 | BL(+) | 32 (98.8) | 64 (358) | 64 (234) | >64 (>218) | 128 (245) | 2 (6.04) |
Citrobacter freundii ATCC 43864 | BL(+) | 64 (198) | 64 (358) | >64 (>234) | NT | 0.5 (0.956) | ≤0.03 (≤0.0906) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.-G.; Li, Z.-W.; Hu, X.-X.; Si, S.-Y.; You, X.-F.; Tang, S.; Wang, Y.-X.; Song, D.-Q. Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents. Molecules 2019, 24, 548. https://doi.org/10.3390/molecules24030548
Fu H-G, Li Z-W, Hu X-X, Si S-Y, You X-F, Tang S, Wang Y-X, Song D-Q. Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents. Molecules. 2019; 24(3):548. https://doi.org/10.3390/molecules24030548
Chicago/Turabian StyleFu, Hai-Gen, Zhi-Wen Li, Xin-Xin Hu, Shu-Yi Si, Xue-Fu You, Sheng Tang, Yan-Xiang Wang, and Dan-Qing Song. 2019. "Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents" Molecules 24, no. 3: 548. https://doi.org/10.3390/molecules24030548
APA StyleFu, H. -G., Li, Z. -W., Hu, X. -X., Si, S. -Y., You, X. -F., Tang, S., Wang, Y. -X., & Song, D. -Q. (2019). Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents. Molecules, 24(3), 548. https://doi.org/10.3390/molecules24030548