New Iridoid Derivatives from the Fruits of Cornus officinalis and Their Neuroprotective Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Neuroprotective Effects of Compounds 1–3
2.3. Discussion
3. Materials and Methods
3.1. Plant Material
3.2. General Experimental Procedures
3.3. Cell lines, Chemicals, and Biochemicals
3.4. Extraction and Isolation
3.5. Compounds Characterization Data
3.6. Neuroprotection Bioassays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015; Volume 1, pp. 27–28. [Google Scholar]
- Wang, W.; Xu, J.D.; Li, L.; Wang, P.C.; Ji, X.M.; Ai, H.X.; Zhang, L. Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res. Bull. 2010, 83, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.G.; Choi, D.H.; Lee, J.K.; Lee, Y.J.; Moon, M.K.; Yang, S.N.; Kwon, T.O.; Kwon, J.W.; Kim, J.S.; Lee, H.S. Endothelial NO/cGMP-dependent vascular relaxation of cornuside isolated from the fruits of Cornus officinalis. Planta Med. 2007, 73, 1436–1440. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Song, S.H.; Zou, Z.Y.; Feng, D.; Wang, Y.Z.; Li, X.G.; Ye, X.L. The hypoglycemic and synergistic effect of loganin, morroniside, and ursolic acid isolated from the fruits of Cornus officinalis. Phytother. Res. 2016, 30, 283–291. [Google Scholar] [CrossRef] [PubMed]
- An, Y.A.; Hwang, J.Y.; Lee, J.S.; Kim, Y.C. Cornus officinalis methanol extract upregulates melanogenesis in melan-a cells. Eur. Toxicol. Res. 2015, 31, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Huwang, K.A.; Huang, Y.J.; Song, J. Antioxidant activities and oxidative stress inhibitory effects of ethanol extracts from Cornus officnalis on raw 264.7 cells. BMC Complementary Altern. Med. 2016, 16, 1–9. [Google Scholar]
- Ma, W.; Wang, K.J.; Cheng, C.S.; Yan, G.Q.; Lu, W.L.; Ge, J.F. Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J. Ethnopharmacol. 2014, 153, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.S.; He, J.; Cheng, Y.C.; Zhang, L.; Qiao, H.Y.; Pan, X.G.; Zhang, J.; Liu, S.N.; Zhang, W.K.; Xu, J.K. Cornusides A-O, Bioactive iridoid glucoside dimers from the fruits of Cornus officinalis. J. Nat. Prod. 2017, 80, 3103–3111. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Sedoheptulose digallate from Cornus officnalis. Phytochemistry 1989, 28, 3469–3472. [Google Scholar] [CrossRef]
- Lee, J.; Jang, D.S.; Kim, N.H.; Lee, Y.M.; Kim, J.; Kim, J.S. Galloyl glucoses from the seeds of Cornus officinalis with inbibitory activity against protein glycation, aldose reductase, and cataractogenesis ex vivo. Biol. Pharm. Bull. 2011, 34, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.Y.; Wang, R.; Shi, Y.P. Chemical constituents from the fruits of Cornus officinalis. Biochem. Syst. Ecol. 2012, 45, 120–123. [Google Scholar] [CrossRef]
- Ledford, H.D. If depression were cancer. Nature 2014, 515, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.Q.; Xian, Y.F.; Ip, S.P.; Tsai, S.H.; Che, C.T. Protective effects of peony glycosides against corticosterone-induced cell death in PC12 cells through antioxidant action. Cell. Mol. Neurobiol. 2011, 133, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Gong, Z.H.; Cao, J.B.; Wang, H.L.; Luo, Z.P.; Li, J. Antidepressant-like effect of agmatine and its possible mechanism. Eur. J. Pharm. 2003, 469, 81–88. [Google Scholar] [CrossRef]
- Zhang, W.K.; Xu, J.K.; He, J.; Qiao, H.Y.; Ye, X.S. Application of Loganin in Manufacture of Medicine or Health Product for Preventing and Treating Depression, Anxiety and Other Mental Disorder Diseases. CN Patent 106176789 A 20161207, 7 December 2016. [Google Scholar]
- Rajabi, M.; Mohaddes, G.; Farajdokht, F.; Nayebi Rad, S.; Mesgari, M.; Babri, S. Impact of loganin on pro-inflammatory cytokines and depression-and anxiety-like bhaviors in male diabetic rats. Physiol. Int. 2018, 105, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, C.H.; Li, J.J.; Zhang, B.; Ji, L.L.; Shang, X.Y. Iridoid glycosides from the fruits of Cornus officinalis. J. Asian Nat. Prod. Res. 2018, 20, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Mao, X.; Shi, X.D.; Li, H. Chemical constituents of the barks of Litsea rubescens. Chem. Nat. Comp. 2017, 53, 694–697. [Google Scholar] [CrossRef]
- Kocsis, A.; Szabo, L.F. New bis-iridoids from Dipsacs laciniatus. J. Nat. Prod. 1993, 56, 1486–1499. [Google Scholar] [CrossRef]
- Jeong, E.J.; Kim, T.B.; Yang, H.J.; Kang, S.Y.; Kim, S.Y.; Sung, S.H.; Kim, Y.C. Neuroprotective iridoid glycosides from Cornus officinalis fruits against glutamate-induced toxicity in HT22 hippocampal cells. Phytomedicine 2012, 19, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.H.; Ding, Y.X.; Zhang, L.; Li, L. Cornel iridoid glycoside improve memory and promotes neuronal survival in fimbria-fornix transected rats. Eur. J. Pharm. 2010, 647, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, F.L.; An, Y.; Ai, H.X.; Zhang, L.; Huang, W.T.; Li, L. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur. J. Pharm. 2009, 613, 19–23. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 2 are available from the authors. |
No. | Compound 1 | Compound 2 | Compound 3 | |||
---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1α | 3.75 (dd, J = 5.0, 12.1) | 64.9 | 3.99 (dd, J = 3.9, 12.0) | 58.9 | 4.95 (d, J = 2.9) | 101.3 |
1β | 3.82 (dd, J = 5.0, 12.1) | 3.54 (dd, J = 1.4, 12.0) | ||||
3 | 4.69 (d, J = 8.4) | 101.6 | 5.04 (d, J = 3.8) | 97.3 | 5.07 (d, J = 8.6) | 97.7 |
4 | 2.26 (dd, J = 8.4, 12.1) | 52.5 | 2.48 (dd, J = 3.8, 11.9) | 49.2 | 2.30 (dd, J = 8.6, 12.3) | 51.7 |
5 | 2.36 (m) | 39.1 | 2.65 (m) | 32.5 | 2.51 (m) | 37.4 |
6α | 1.79 (m) | 40.4 | 1.83 (m) | 42.5 | 1.69 (m) | 40.2 |
6β | 1.75(m) | 1.77 (m) | 1.81 (m) | |||
7 | 4.09 (m) | 75.5 | 4.08 (m) | 74.6 | 4.08 (m) | 74.9 |
8 | 1.80 (m) | 40.7 | 1.90 (m) | 39.7 | 1.84 (m) | 40.9 |
9 | 1.84 (m) | 43.5 | 1.68 (m) | 42.9 | 1.88 (m) | 47.8 |
10 | 0.95 (d, J = 6.6) | 12.4 | 0.97 (d, J = 6.8) | 12.2 | 0.97 (d, J = 6.3) | 12.7 |
11 | - | 174.8 | - | 173.0 | - | 174.4 |
12 | 3.61 (s) | 52.3 | 3.56 (s) | 52.2 | 3.62 (s) | 52.5 |
1′α | 4.62 (d, J = 13.6) | 62.7 | 4.53 (d, J = 13.7) | 61.9 | 4.70 (d, J = 13.3) | 63.1 |
1′β | 4.71 (d, J = 13.6) | 4.64 (d, J = 13.7) | 4.78 (d, J = 13.3) | |||
2′ | - | 159.5 | - | 159.3 | - | 159.5 |
3′ | 6.57 (d, J = 3.5) | 112.7 | 6.58 (d, J = 3.6) | 113.1 | 6.67 (d, J = 3.6) | 113.0 |
4′ | 7.34 (d, J = 3.5) | 124.4 | 7.35 (d, J = 3.6) | 124.4 | 7.36 (d, J = 3.6) | 124.4 |
5′ | - | 154.2 | - | 154.3 | - | 154.3 |
6′ | 9.52 (s) | 179.5 | 9.53 (s) | 179.4 | 9.54 (s) | 179.5 |
1″α | 4.69 (d, J = 13.4) | 62.8 | ||||
1″β | 4.81 (d, J = 13.4) | |||||
2″ | - | 159.2 | ||||
3″ | 6.63 (d, J = 3.6) | 112.9 | ||||
4″ | 7.35 (d, J = 3.6) | 124.4 | ||||
5″ | - | 154.3 | ||||
6″ | 9.52 (s) | 179.5 |
Sample | Viability (%) |
---|---|
Control | 100.00 ± 1.21 |
Model | 53.54 ± 1.82 ### |
1 | 57.42 ± 2.74 |
2 | 68.23 ± 2.26 *** |
3 | 59.46 ± 3.62 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.-l.; Wang, X.; Li, J.-j.; Zhong, X.-j.; Zhang, B.; Juan, J.; Shang, X.-y. New Iridoid Derivatives from the Fruits of Cornus officinalis and Their Neuroprotective Activities. Molecules 2019, 24, 625. https://doi.org/10.3390/molecules24030625
Ji L-l, Wang X, Li J-j, Zhong X-j, Zhang B, Juan J, Shang X-y. New Iridoid Derivatives from the Fruits of Cornus officinalis and Their Neuroprotective Activities. Molecules. 2019; 24(3):625. https://doi.org/10.3390/molecules24030625
Chicago/Turabian StyleJi, Lin-lin, Xin Wang, Jin-jie Li, Xiang-jian Zhong, Bo Zhang, Jing Juan, and Xiao-ya Shang. 2019. "New Iridoid Derivatives from the Fruits of Cornus officinalis and Their Neuroprotective Activities" Molecules 24, no. 3: 625. https://doi.org/10.3390/molecules24030625
APA StyleJi, L. -l., Wang, X., Li, J. -j., Zhong, X. -j., Zhang, B., Juan, J., & Shang, X. -y. (2019). New Iridoid Derivatives from the Fruits of Cornus officinalis and Their Neuroprotective Activities. Molecules, 24(3), 625. https://doi.org/10.3390/molecules24030625