Computational Structural Biology: Successes, Future Directions, and Challenges
Abstract
:1. Introduction
2. The Breadth of Computational Biology
3. The Quest to Understand the Molecular Mechanisms
4. Challenges in Computational Structural Biology
5. Some Emerging Principles in Computational Structural Biology
6. Areas that May Take the Center Stage
- (a)
- Modeling large molecular assemblies and critically figuring out their assembly–disassembly processes in the cell to regulate its functions
- (b)
- Modeling chromatin structure and dynamics and, especially, figuring out their regulation
- (c)
- Regulation of signaling in key protein nodes and between them in the cell
- (d)
- Modeling and prediction of drug resistance
- (e)
- Integration of experimental statistical ‘big data’ and the structural landscapes to model cells (tissues) behavior and system complexity
- (f)
- Precision medicine, to identify and predict drug targets, and drug discovery
- (g)
- Figuring out how the microbiota hijacks cell signaling and cell response to infection
- (h)
- Efficient sampling of the conformational space
- (i)
- Modeling across scales
- (j)
- Figuring out molecular mechanisms in detail and how these are commandeered by mutations in disease
- (k)
- Untangling redundant signaling pathways in the cell
- (l)
- Designing functional molecules and cells
- (m)
- Generating detailed, high-fidelity, synthetic biological data in silico to test hypotheses and advance model building, testing, and biological knowledge.
7. Conclusions
Funding
Conflicts of Interest
References
- Jakobsson, E. The Top Ten Advances of the Last Decade & The Top Ten Challenges of the Next Decade. Biomed. Comput. Rev. 2005, 1, 11–15. [Google Scholar]
- Nussinov, R. Advancements and challenges in computational biology. PLoS Comput. Biol. 2015, 11, e1004053. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, E.S.; Nussinov, R.; Gursoy, A.; Keskin, O. Developments in integrative modeling with dynamical interfaces. Curr. Opin. Struct. Biol. 2018, 56, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Dimura, M.; Peulen, T.O.; Hanke, C.A.; Prakash, A.; Gohlke, H.; Seidel, C.A. Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems. Curr. Opin. Struct. Biol. 2016, 40, 163–185. [Google Scholar] [CrossRef]
- Gaalswyk, K.; Muniyat, M.I.; MacCallum, J.L. The emerging role of physical modeling in the future of structure determination. Curr. Opin. Struct. Biol. 2018, 49, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Viswanath, S.; Bonomi, M.; Pellarin, R.; Greenberg, C.H.; Saltzberg, D.; Sali, A. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci. 2018, 27, 245–258. [Google Scholar] [CrossRef]
- Russel, D.; Lasker, K.; Webb, B.; Velazquez-Muriel, J.; Tjioe, E.; Schneidman-Duhovny, D.; Peterson, B.; Sali, A. Putting the pieces together: Integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 2012, 10, e1001244. [Google Scholar] [CrossRef] [PubMed]
- Baspinar, A.; Cukuroglu, E.; Nussinov, R.; Keskin, O.; Gursoy, A. PRISM: A web server and repository for prediction of protein-protein interactions and modeling their 3D complexes. Nucleic Acids Res. 2014, 42, W285–W289. [Google Scholar] [CrossRef]
- Kuzu, G.; Keskin, O.; Nussinov, R.; Gursoy, A. PRISM-EM: Template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Acta Crystallogr. D Struct. Biol. 2016, 72, 1137–1148. [Google Scholar] [CrossRef]
- Tyagi, M.; Hashimoto, K.; Shoemaker, B.A.; Wuchty, S.; Panchenko, A.R. Large-scale mapping of human protein interactome using structural complexes. EMBO Rep. 2012, 13, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Frank, J. Time-resolved cryo-electron microscopy: Recent progress. J. Struct. Biol. 2017, 200, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Szigeti, B.; Roth, Y.D.; Sekar, J.A.P.; Goldberg, A.P.; Pochiraju, S.C.; Karr, J.R. A blueprint for human whole-cell modeling. Curr. Opin. Syst. Biol. 2018, 7, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Resasco, D.C.; Gao, F.; Morgan, F.; Novak, I.L.; Schaff, J.C.; Slepchenko, B.M. Virtual Cell: Computational tools for modeling in cell biology. Wiley Interdiscip Rev. Syst. Biol. Med. 2012, 4, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Cowan, A.E.; Moraru, I.I.; Schaff, J.C.; Slepchenko, B.M.; Loew, L.M. Spatial modeling of cell signaling networks. Methods Cell Biol. 2012, 110, 195–221. [Google Scholar] [PubMed]
- Thurley, K.; Wu, L.F.; Altschuler, S.J. Modeling Cell-to-Cell Communication Networks Using Response-Time Distributions. Cell Syst. 2018, 6, 355–367. [Google Scholar] [CrossRef]
- Engblom, S.; Wilson, D.B.; Baker, R.E. Scalable population-level modelling of biological cells incorporating mechanics and kinetics in continuous time. Royal Soc. Open Sci. 2018, 5, 180379. [Google Scholar] [CrossRef]
- Doerr, A. Cryo-electron tomography. Nat. Methods 2017, 14, 34. [Google Scholar] [CrossRef]
- Lant, J.T.; Berg, M.D.; Heinemann, I.U.; Brandl, C.J.; O′Donoghue, P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J. Biol. Chem. 2019. [Google Scholar] [CrossRef]
- Hwang, S.; Kim, C.Y.; Yang, S.; Kim, E.; Hart, T.; Marcotte, E.M.; Lee, I. HumanNet v2: Human gene networks for disease research. Nucleic Acids Res. 2019, 47, D573–D580. [Google Scholar] [CrossRef]
- Kim, M.J.; Deng, H.X.; Wong, Y.C.; Siddique, T.; Krainc, D. The Parkinson′s disease-linked protein TMEM230 is required for Rab8a-mediated secretory vesicle trafficking and retromer trafficking. Hum. Mol. Genet. 2017, 26, 729–741. [Google Scholar]
- Muller, T.G.; Sakin, V.; Muller, B. A Spotlight on Viruses-Application of Click Chemistry to Visualize Virus-Cell Interactions. Molecules 2019, 24, 481. [Google Scholar] [CrossRef] [PubMed]
- Hattab, G.; Wiesmann, V.; Becker, A.; Munzner, T.; Nattkemper, T.W. A Novel Methodology for Characterizing Cell Subpopulations in Automated Time-lapse Microscopy. Front. Bioeng. Biotechnol. 2018, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.J.; Berndl, M.; Michael Ando, D.; Barch, M.; Narayanaswamy, A.; Christiansen, E.; Hoyer, S.; Roat, C.; Hung, J.; Rueden, C.T.; et al. Assessing microscope image focus quality with deep learning. BMC Bioinformatics 2018, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Ideker, T.; Nussinov, R. Network approaches and applications in biology. PLoS Comput. Biol. 2017, 13, e1005771. [Google Scholar] [CrossRef]
- Tsai, C.J.; Nussinov, R. Allosteric activation of RAF in the MAPK signaling pathway. Curr. Opin. Struct. Biol. 2018, 53, 100–106. [Google Scholar] [CrossRef]
- Paul, M.D.; Hristova, K. The RTK Interactome: Overview and Perspective on RTK Heterointeractions. Chem. Rev. 2018. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Zhang, M.; Tsai, C.J.; Liao, T.J.; Fushman, D.; Jang, H. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: A comprehensive review underscoring the challenges in pharmacological intervention. Biophys. Rev. 2018, 10, 1263–1282. [Google Scholar] [CrossRef]
- Vieira, M.S.; Goulart, V.A.M.; Parreira, R.C.; Oliveira-Lima, O.C.; Glaser, T.; Naaldijk, Y.M.; Ferrer, A.; Savanur, V.H.; Reyes, P.A.; Sandiford, O.; et al. Decoding Epigenetic Cell Signaling in Neuronal Differentiation. Semin. Cell Dev. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Verkhivker, G.M. Biophysical simulations and structure-based modeling of residue interaction networks in the tumor suppressor proteins reveal functional role of cancer mutation hotspots in molecular communication. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Pantsar, T.; Rissanen, S.; Dauch, D.; Laitinen, T.; Vattulainen, I.; Poso, A. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. PLoS Comput. Biol. 2018, 14, e1006458. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fan, S.; Li, W.; Tao, W.; Shi, T.; Zhao, Y.L. Theoretical Investigation of the Structural Characteristics in Active State of Akt1 Kinase. J. Chem. Inf. Model. 2018. [Google Scholar] [CrossRef]
- Cheng, F.; Nussinov, R. KRAS Activating Signaling Triggers Arteriovenous Malformations. Trends Biochem. Sci. 2018, 43, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Li, Y.; Liu, Q.; Chen, Q.; Chen, L.; Zhou, D. The Hippo Signaling Pathway in Regenerative Medicine. Methods Mol. Biol. 2019, 1893, 353–370. [Google Scholar] [PubMed]
- Li, S.; Jang, H.; Zhang, J.; Nussinov, R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018, 26, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Tsai, C.J.; Jang, H. Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Res. 2018, 78, 593–602. [Google Scholar] [CrossRef]
- Zhou, H.; Dong, Z.; Tao, P. Recognition of protein allosteric states and residues: Machine learning approaches. J. Comput. Chem. 2018, 39, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
- Guven-Maiorov, E.; Tsai, C.J.; Nussinov, R. Structural host-microbiota interaction networks. PLoS Comput. Biol. 2017, 13, e1005579. [Google Scholar] [CrossRef]
- Nussinov, R.; Jang, H.; Tsai, C.J.; Liao, T.J.; Li, S.; Fushman, D.; Zhang, J. Intrinsic protein disorder in oncogenic KRAS signaling. Cell. Mol. Life Sci. 2017, 74, 3245–3261. [Google Scholar] [CrossRef]
- Guven-Maiorov, E.; Keskin, O.; Gursoy, A.; VanWaes, C.; Chen, Z.; Tsai, C.J.; Nussinov, R. The Architecture of the TIR Domain Signalosome in the Toll-like Receptor-4 Signaling Pathway. Sci. Rep. 2015, 5, 13128. [Google Scholar] [CrossRef] [Green Version]
- Csermely, P.; Korcsmaros, T.; Nussinov, R. Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy: RAS acts as contextual signaling hub. Semin. Cell Dev. Biol. 2016, 58, 55–59. [Google Scholar] [CrossRef]
- Trivedi, S.; Starz-Gaiano, M. Drosophila Jak/STAT Signaling: Regulation and Relevance in Human Cancer and Metastasis. Int. J. Mol. Sci. 2018, 19, 4056. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Tsai, C.J. The Role of Allostery in the Termination of Second Messenger Signaling. Biophys. J. 2015, 109, 1080–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capriotti, E.; Ozturk, K.; Carter, H. Integrating molecular networks with genetic variant interpretation for precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 12, e1443. [Google Scholar] [CrossRef] [PubMed]
- Chavan, T.S.; Muratcioglu, S.; Marszalek, R.; Jang, H.; Keskin, O.; Gursoy, A.; Nussinov, R.; Gaponenko, V. Plasma membrane regulates Ras signaling networks. Cell Logist. 2015, 5, e1136374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishiyama, T. Cohesion and cohesin-dependent chromatin organization. Curr. Opin. Cell Biol. 2018, 58, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Gaullier, G.; Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Fu, I.; Smith, D.J.; Broyde, S. Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome. DNA Repair (Amst.) 2019, 73, 155–163. [Google Scholar] [CrossRef]
- Di Pierro, M.; Cheng, R.R.; Lieberman Aiden, E.; Wolynes, P.G.; Onuchic, J.N. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture. Proc. Natl. Acad Sci. USA 2017, 114, 12126–12131. [Google Scholar] [CrossRef] [Green Version]
- Di Pierro, M.; Zhang, B.; Aiden, E.L.; Wolynes, P.G.; Onuchic, J.N. Transferable model for chromosome architecture. Proc. Natl. Acad. Sci. USA 2016, 113, 12168–12173. [Google Scholar] [CrossRef]
- Gursoy, G.; Xu, Y.; Kenter, A.L.; Liang, J. Computational construction of 3D chromatin ensembles and prediction of functional interactions of alpha-globin locus from 5C data. Nucleic Acids Res. 2017, 45, 11547–11558. [Google Scholar] [CrossRef] [Green Version]
- Weiner, A.; Hsieh, T.H.; Appleboim, A.; Chen, H.V.; Rahat, A.; Amit, I.; Rando, O.J.; Friedman, N. High-resolution chromatin dynamics during a yeast stress response. Mol. Cell 2015, 58, 371–386. [Google Scholar] [CrossRef] [PubMed]
- Gursoy, G.; Xu, Y.; Kenter, A.L.; Liang, J. Spatial confinement is a major determinant of the folding landscape of human chromosomes. Nucleic Acids Res. 2014, 42, 8223–8230. [Google Scholar] [CrossRef] [PubMed]
- Erez, A.; Vogel, R.; Mugler, A.; Belmonte, A.; Altan-Bonnet, G. Modeling of cytometry data in logarithmic space: When is a bimodal distribution not bimodal? Cytometry A 2018, 93, 611–619. [Google Scholar] [CrossRef]
- Angelin-Bonnet, O.; Biggs, P.J.; Vignes, M. Gene Regulatory Networks: A Primer in Biological Processes and Statistical Modelling. Methods Mol. Biol. 2019, 1883, 347–383. [Google Scholar] [PubMed]
- Nussinov, R. A top 12 list for Biocomputing. A decade of progress and challenges ahead. Biomed. Comput. Rev. 2014, 1, 17–22. [Google Scholar]
- Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities. Inf. Fusion 2019, 50, 71–91. [Google Scholar] [CrossRef] [PubMed]
- Fuxreiter, M. Towards a Stochastic Paradigm: From Fuzzy Ensembles to Cellular Functions. Molecules 2018, 23, 3008. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Xi, W.; Nussinov, R.; Ma, B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem. Rev. 2016, 116, 6516–6551. [Google Scholar] [CrossRef] [PubMed]
- Papaleo, E.; Saladino, G.; Lambrughi, M.; Lindorff-Larsen, K.; Gervasio, F.L.; Nussinov, R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem. Rev. 2016, 116, 6391–6423. [Google Scholar] [CrossRef] [Green Version]
- Mason, S.; Chen, B.Y.; Jagodzinski, F. Exploring Protein Cavities through Rigidity Analysis. Molecules 2018, 23, 351. [Google Scholar] [CrossRef]
- Chen, B.Y. VASP-E: Specificity annotation with a volumetric analysis of electrostatic isopotentials. PLoS Comput. Biol. 2014, 10, e1003792. [Google Scholar] [CrossRef] [PubMed]
- Bignon, E.; Allega, M.F.; Lucchetta, M.; Tiberti, M.; Papaleo, E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front. Oncol. 2018, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- Cosin-Tomas, M.; Alvarez-Lopez, M.J.; Companys-Alemany, J.; Kaliman, P.; Gonzalez-Castillo, C.; Ortuno-Sahagun, D.; Pallas, M.; Grinan-Ferre, C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front. Genet. 2018, 9, 596. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Gabrovsek, L.; Langeberg, L.K.; Golkowski, M.; Ong, S.E.; Smith, F.D.; Scott, J.D. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J. Biol. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Schwen, L.O.; Andersson, E.; Korski, K.; Weiss, N.; Haase, S.; Gaire, F.; Hahn, H.K.; Homeyer, A.; Grimm, O. Data-Driven Discovery of Immune Contexture Biomarkers. Front. Oncol. 2018, 8, 627. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.X.; Helleberg, M.; Jensen, A.B.; Brunak, S.; Lundgren, J. A large-cohort, longitudinal study determines pre-cancer disease routes across different cancer types. Cancer Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Garud, N.R.; Good, B.H.; Hallatschek, O.; Pollard, K.S. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 2019, 17, e3000102. [Google Scholar] [CrossRef]
- Hjelmso, M.H.; Mollerup, S.; Jensen, R.H.; Pietroni, C.; Lukjancenko, O.; Schultz, A.C.; Aarestrup, F.M.; Hansen, A.J. Metagenomic analysis of viruses in toilet waste from long distance flights-A new procedure for global infectious disease surveillance. PLoS ONE 2019, 14, e0210368. [Google Scholar] [CrossRef]
- Thissen, J.B.; Isshiki, M.; Jaing, C.; Nagao, Y.; Lebron Aldea, D.; Allen, J.E.; Izui, M.; Slezak, T.R.; Ishida, T.; Sano, T. A novel variant of torque teno virus 7 identified in patients with Kawasaki disease. PLoS ONE 2018, 13, e0209683. [Google Scholar] [CrossRef]
- Bradley, P.H.; Nayfach, S.; Pollard, K.S. Phylogeny-corrected identification of microbial gene families relevant to human gut colonization. PLoS Comput. Biol. 2018, 14, e1006242. [Google Scholar] [CrossRef]
- Higashi, K.; Suzuki, S.; Kurosawa, S.; Mori, H.; Kurokawa, K. Latent environment allocation of microbial community data. PLoS Comput. Biol. 2018, 14, e1006143. [Google Scholar] [CrossRef] [PubMed]
- Kidzinski, L.; Delp, S.; Schwartz, M. Automatic real-time gait event detection in children using deep neural networks. PLoS ONE 2019, 14, e0211466. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.L.; Sommer, L.; Gonzalez Silos, R.; Lorenzo Bermejo, J.; von Au, A.; Seitz, J.; Hennigs, A.; Smetanay, K.; Golatta, M.; Heil, J.; et al. Prediction of local recurrence risk after neoadjuvant chemotherapy in patients with primary breast cancer: Clinical utility of the MD Anderson Prognostic Index. PLoS ONE 2019, 14, e0211337. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, H.K.; Forslund, S.K.; Gudmundsdottir, V.; Petersen, A.O.; Hildebrand, F.; Hyotylainen, T.; Nielsen, T.; Hansen, T.; Bork, P.; Ehrlich, S.D.; et al. A computational framework to integrate high-throughput ’-omics’ datasets for the identification of potential mechanistic links. Nat. Protoc. 2018, 13, 2781–2800. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Jiang, T.; Jiang, R. Constructing tissue-specific transcriptional regulatory networks via a Markov random field. BMC Genomics 2018, 19, 884. [Google Scholar] [CrossRef] [PubMed]
- Budu-Aggrey, A.; Brumpton, B.; Tyrrell, J.; Watkins, S.; Modalsli, E.H.; Celis-Morales, C.; Ferguson, L.D.; Vie, G.A.; Palmer, T.; Fritsche, L.G.; et al. Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study. PLoS Med. 2019, 16, e1002739. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Jang, H.; Tsai, C.J. The structural basis for cancer treatment decisions. Oncotarget 2014, 5, 7285–7302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussinov, R.; Tsai, C.J. Allostery in disease and in drug discovery. Cell 2013, 153, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Tsai, C.J.; Liu, J. Principles of allosteric interactions in cell signaling. J. Am. Chem. Soc. 2014, 136, 17692–17701. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Muratcioglu, S.; Tsai, C.J.; Jang, H.; Gursoy, A.; Keskin, O. The Key Role of Calmodulin in KRAS-Driven Adenocarcinomas. Mol. Cancer Res. 2015, 13, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
- Nussinov, R.; Muratcioglu, S.; Tsai, C.J.; Jang, H.; Gursoy, A.; Keskin, O. K-Ras4B/calmodulin/PI3Kalpha: A promising new adenocarcinoma-specific drug target? Expert Opin. Ther. Targets 2016, 20, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Wang, G.; Tsai, C.J.; Jang, H.; Lu, S.; Banerjee, A.; Zhang, J.; Gaponenko, V. Calmodulin and PI3K Signaling in KRAS Cancers. Trends Cancer 2017, 3, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.; Muratcioglu, S.; Gursoy, A.; Keskin, O.; Nussinov, R. Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem. J. 2016, 473, 1719–1732. [Google Scholar] [CrossRef] [PubMed]
- Guven-Maiorov, E.; Tsai, C.J.; Ma, B.; Nussinov, R. Interface-Based Structural Prediction of Novel Host-Pathogen Interactions. Methods Mol. Biol. 2019, 1851, 317–335. [Google Scholar] [PubMed]
- Rangarajan, S.; He, Y.; Chen, Y.; Kerzic, M.C.; Ma, B.; Gowthaman, R.; Pierce, B.G.; Nussinov, R.; Mariuzza, R.A.; Orban, J. Peptide-MHC (pMHC) binding to a human antiviral T cell receptor induces long-range allosteric communication between pMHC- and CD3-binding sites. J. Biol. Chem. 2018, 293, 15991–16005. [Google Scholar] [CrossRef] [PubMed]
- Weismiller, H.A.; Murphy, R.; Wei, G.; Ma, B.; Nussinov, R.; Margittai, M. Structural disorder in four-repeat Tau fibrils reveals a new mechanism for barriers to cross-seeding of Tau isoforms. J. Biol. Chem. 2018, 293, 17336–17348. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-beta (Aβ) monomer, oligomer, and fibril by homologous antibodies. J. Biol. Chem. 2017, 292, 18325–18343. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Livnat Levanon, N.; Acar, B.; Aykac Fas, B.; Masrati, G.; Rose, J.; Ben-Tal, N.; Haliloglu, T.; Zhao, Y.; Lewinson, O. Single-molecule probing of the conformational homogeneity of the ABC transporter BtuCD. Nat. Chem. Biol. 2018, 14, 715–722. [Google Scholar] [CrossRef]
- Chen, K.E.; Tillu, V.A.; Chandra, M.; Collins, B.M. Molecular Basis for Membrane Recruitment by the PX and C2 Domains of Class II Phosphoinositide 3-Kinase-C2α. Structure 2018, 26, 1612–1625. [Google Scholar] [CrossRef]
- Riccio, G.; Bottone, S.; La Regina, G.; Badolati, N.; Passacantilli, S.; Rossi, G.B.; Accardo, A.; Dentice, M.; Silvestri, R.; Novellino, E.; et al. A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry 2018, 57, 839–851. [Google Scholar] [CrossRef]
- Gentile, D.R.; Rathinaswamy, M.K.; Jenkins, M.L.; Moss, S.M.; Siempelkamp, B.D.; Renslo, A.R.; Burke, J.E.; Shokat, K.M. Ras Binder Induces a Modified Switch-II Pocket in GTP and GDP States. Cell Chem. Biol. 2017, 24, 1455–1466. [Google Scholar] [CrossRef]
- Parker, J.A.; Volmar, A.Y.; Pavlopoulos, S.; Mattos, C. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D. Structure 2018, 26, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Nakhaeizadeh, H.; Amin, E.; Nakhaei-Rad, S.; Dvorsky, R.; Ahmadian, M.R. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. PLoS ONE 2016, 11, e0167145. [Google Scholar] [CrossRef] [PubMed]
- Ung, P.M.; Rahman, R.; Schlessinger, A. Redefining the Protein Kinase Conformational Space with Machine Learning. Cell Chem. Biol. 2018, 25, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Anderton, M.J.; Ashton, S.; Bethel, P.A.; Box, M.; Butterworth, S.; Colclough, N.; Chorley, C.G.; Chuaqui, C.; Cross, D.A.; et al. Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR). J. Med. Chem. 2013, 56, 7025–7048. [Google Scholar] [CrossRef] [PubMed]
- Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer′s Disease. Front. Pharmacol. 2015, 6, 321. [Google Scholar] [PubMed]
- Zeke, A.; Misheva, M.; Remenyi, A.; Bogoyevitch, M.A. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol. Mol. Biol. Rev. 2016, 80, 793–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biancucci, M.; Minasov, G.; Banerjee, A.; Herrera, A.; Woida, P.J.; Kieffer, M.B.; Bindu, L.; Abreu-Blanco, M.; Anderson, W.F.; Gaponenko, V.; et al. The bacterial Ras/Rap1 site-specific endopeptidase RRSP cleaves Ras through an atypical mechanism to disrupt Ras-ERK signaling. Sci. Signal. 2018, 11, eaat8335. [Google Scholar] [CrossRef]
- Hitchinson, B.; Eby, J.M.; Gao, X.; Guite-Vinet, F.; Ziarek, J.J.; Abdelkarim, H.; Lee, Y.; Okamoto, Y.; Shikano, S.; Majetschak, M.; et al. Biased antagonism of CXCR4 avoids antagonist tolerance. Sci. Signal. 2018, 11, eaat2214. [Google Scholar] [CrossRef]
- Liu, Y.; Ebalunode, J.O.; Briggs, J.M. Insights into the substrate binding specificity of quorum-quenching acylase PvdQ. J. Mol. Graph. Model. 2019, 88, 104–120. [Google Scholar] [CrossRef]
- Mitra, M.; Asad, M.; Kumar, S.; Yadav, K.; Chaudhary, S.; Bhavesh, N.S.; Khalid, S.; Thukral, L.; Bajaj, A. Distinct Intramolecular Hydrogen Bonding Dictates Antimicrobial Action of Membrane-Targeting Amphiphiles. J. Phys. Chem. Lett. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bonhenry, D.; Schober, R.; Schmidt, T.; Waldherr, L.; Ettrich, R.H.; Schindl, R. Mechanistic insights into the Orai channel by molecular dynamics simulations. Semin. Cell Dev. Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Oshima, H.; Re, S.; Sakakura, M.; Takahashi, H.; Sugita, Y. Population Shift Mechanism for Partial Agonism of AMPA Receptor. Biophys. J. 2019, 116, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Liu, X.; Zhang, C.S.; Gong, H.; Wu, J.W.; Wang, Z.X. Structural and Dynamic Insights into the Mechanism of Allosteric Signal Transmission in ERK2-Mediated MKP3 Activation. Biochemistry 2017, 56, 6165–6175. [Google Scholar] [CrossRef]
- Jambrina, P.G.; Rauch, N.; Pilkington, R.; Rybakova, K.; Nguyen, L.K.; Kholodenko, B.N.; Buchete, N.V.; Kolch, W.; Rosta, E. Phosphorylation of RAF Kinase Dimers Drives Conformational Changes that Facilitate Transactivation. Angew. Chem. Int. Ed. Engl. 2016, 55, 983–986. [Google Scholar] [CrossRef] [PubMed]
- Barr, D.; Oashi, T.; Burkhard, K.; Lucius, S.; Samadani, R.; Zhang, J.; Shapiro, P.; MacKerell, A.D.; van der Vaart, A. Importance of domain closure for the autoactivation of ERK2. Biochemistry 2011, 50, 8038–8048. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, E.S.; Jang, H.; Gursoy, A.; Keskin, O.; Li, Z.; Sacks, D.B.; Nussinov, R. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2. J. Biol. Chem. 2018, 293, 3685–3699. [Google Scholar] [CrossRef] [Green Version]
- Echeverria, I.; Liu, Y.; Gabelli, S.B.; Amzel, L.M. Oncogenic mutations weaken the interactions that stabilize the p110α-p85α heterodimer in phosphatidylinositol 3-kinase α. FEBS J. 2015, 282, 3528–3542. [Google Scholar] [CrossRef] [PubMed]
- Fetics, S.K.; Guterres, H.; Kearney, B.M.; Buhrman, G.; Ma, B.; Nussinov, R.; Mattos, C. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure 2015, 23, 505–516. [Google Scholar] [CrossRef]
- Li, Z.L.; Prakash, P.; Buck, M. A “Tug of War” Maintains a Dynamic Protein-Membrane Complex: Molecular Dynamics Simulations of C-Raf RBD-CRD Bound to K-Ras4B at an Anionic Membrane. ACS Cent. Sci. 2018, 4, 298–305. [Google Scholar] [CrossRef]
- Skinner, J.J.; Wang, S.; Lee, J.; Ong, C.; Sommese, R.; Sivaramakrishnan, S.; Koelmel, W.; Hirschbeck, M.; Schindelin, H.; Kisker, C.; et al. Conserved salt-bridge competition triggered by phosphorylation regulates the protein interactome. Proc. Natl. Acad. Sci. USA 2017, 114, 13453–13458. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Wu, S.; Zhang, Y. Ab Initio Protein Structure Prediction. In From Protein Structure to Function with Bioinformatics; Rigden, D.J., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 3–35. [Google Scholar]
- Lensink, M.F.; Velankar, S.; Baek, M.; Heo, L.; Seok, C.; Wodak, S.J. The challenge of modeling protein assemblies: The CASP12-CAPRI experiment. Proteins 2018, 86, 257–273. [Google Scholar] [PubMed]
- Shehu, A.; Nussinov, R. Computational Methods for Exploration and Analysis of Macromolecular Structure and Dynamics. PLoS Comput. Biol. 2015, 11, e1004585. [Google Scholar] [CrossRef] [PubMed]
- Maximova, T.; Moffatt, R.; Ma, B.; Nussinov, R.; Shehu, A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput. Biol. 2016, 12, e1004619. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.W.; Guarnera, E.; Berezovsky, I.N. Exploring chromatin hierarchical organization via Markov State Modelling. PLoS Comput. Biol. 2018, 14, e1006686. [Google Scholar] [CrossRef] [PubMed]
- Service, R.F. Google’s DeepMind aces protein folding. Available online: http://www.sciencemag.org/news/2018/12/google-s-deepmind-aces-protein-folding (accessed on 6 December 2018).
- Qiao, W.; Akhter, N.; Fang, X.; Maximova, T.; Plaku, E.; Shehu, A. From mutations to mechanisms and dysfunction via computation and mining of protein energy landscapes. BMC Genomics 2018, 19, 671. [Google Scholar] [CrossRef] [PubMed]
- Akhter, N.; Shehu, A. From Extraction of Local Structures of Protein Energy Landscapes to Improved Decoy Selection in Template-Free Protein Structure Prediction. Molecules 2018, 23, 216. [Google Scholar] [CrossRef] [PubMed]
- Sapin, E.; Carr, D.B.; De Jong, K.A.; Shehu, A. Comput. ing energy landscape maps and structural excursions of proteins. BMC Genomics 2016, 17, 546. [Google Scholar] [CrossRef]
- Gardino, A.K.; Villali, J.; Kivenson, A.; Lei, M.; Liu, C.F.; Steindel, P.; Eisenmesser, E.Z.; Labeikovsky, W.; Wolf-Watz, M.; Clarkson, M.W.; et al. Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 2009, 139, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Villali, J.; Kern, D. Choreographing an enzyme′s dance. Curr. Opin. Chem. Biol. 2010, 14, 636–643. [Google Scholar] [CrossRef]
- Curado-Carballada, C.; Feixas, F.; Iglesias-Fernandez, J.; Osuna, S. Hidden Conformations in Aspergillus niger Monoamine Oxidase are Key for Catalytic Efficiency. Angew. Chem. Int. Ed. Engl. 2019. [Google Scholar] [CrossRef]
- Zarrabi, N.; Schluesche, P.; Meisterernst, M.; Borsch, M.; Lamb, D.C. Analyzing the Dynamics of Single TBP-DNA-NC2 Complexes Using Hidden Markov Models. Biophys. J. 2018, 115, 2310–2326. [Google Scholar] [CrossRef] [PubMed]
- Crooks, J.E.; Boughter, C.T.; Scott, L.R.; Adams, E.J. The Hypervariable Loops of Free TCRs Sample Multiple Distinct Metastable Conformations in Solution. Front. Mol. Biosci. 2018, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Narayan, B.; Herbert, C.; Yuan, Y.; Rodriguez, B.J.; Brooks, B.R.; Buchete, N.V. Conformational analysis of replica exchange MD: Temperature-dependent Markov networks for FF amyloid peptides. J. Chem. Phys. 2018, 149, 072323. [Google Scholar] [CrossRef] [PubMed]
- Biswas, M.; Lickert, B.; Stock, G. Metadynamics Enhanced Markov Modeling of Protein Dynamics. J. Phys. Chem. B 2018, 122, 5508–5514. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.I.; Hart, K.M.; Sibbald, C.A.; Frederick, T.E.; Jimah, J.R.; Knoverek, C.R.; Tolia, N.H.; Bowman, G.R. Prediction of New Stabilizing Mutations Based on Mechanistic Insights from Markov State Models. ACS Cent. Sci. 2017, 3, 1311–1321. [Google Scholar] [CrossRef]
- Olsson, S.; Wu, H.; Paul, F.; Clementi, C.; Noe, F. Combining experimental and simulation data of molecular processes via augmented Markov models. Proc. Natl. Acad. Sci. USA 2017, 114, 8265–8270. [Google Scholar] [CrossRef] [Green Version]
- Khrenova, M.G.; Kots, E.D.; Varfolomeev, S.D.; Lushchekina, S.V.; Nemukhin, A.V. Three Faces of N-Acetylaspartate: Activator, Substrate, and Inhibitor of Human Aspartoacylase. J. Phys. Chem. B 2017, 121, 9389–9397. [Google Scholar] [CrossRef]
- Ho, K.C.; Hamelberg, D. Combinatorial Coarse-Graining of Molecular Dynamics Simulations for Detecting Relationships between Local Configurations and Overall Conformations. J. Chem. Theory Comput. 2018, 14, 6026–6034. [Google Scholar] [CrossRef]
- Katkar, H.H.; Davtyan, A.; Durumeric, A.E.P.; Hocky, G.M.; Schramm, A.C.; De La Cruz, E.M.; Voth, G.A. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments. Biophys. J. 2018, 115, 1589–1602. [Google Scholar] [CrossRef]
- Bian, Y.; Ren, W.; Song, F.; Yu, J.; Wang, J. Exploration of the folding dynamics of human telomeric G-quadruplex with a hybrid atomistic structure-based model. J. Chem. Phys. 2018, 148, 204107. [Google Scholar] [CrossRef] [PubMed]
- Lerner, E.; Ingargiola, A.; Weiss, S. Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. J. Chem. Phys. 2018, 148, 123315. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Chan Miller, C.; Szostak, J.W. Core-Shell Modeling of Light Scattering by Vesicles: Effect of Size, Contents, and Lamellarity. Biophys. J. 2019. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Trewhella, J.; Vallat, B.; Westbrook, J.D. Archiving of Integrative Structural Models. Adv. Exp. Med. Biol. 2018, 1105, 261–272. [Google Scholar] [PubMed]
- Nussinov, R.; Jang, H.; Tsai, C.J.; Cheng, F. Precision medicine review: Rare driver mutations and their biophysical classification. Biophys. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Liang, H.; Butte, A.J.; Eng, C.; Nussinov, R. Personal Mutanomes Meet Modern Oncology Drug Discovery and Precision Health. Pharmacol. Rev. 2019, 71, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Simmerling, C. Fast Pairwise Approximation of Solvent Accessible Surface Area for Implicit Solvent Simulations of Proteins on CPUs and GPUs. J. Chem. Theory Comput. 2018, 14, 5797–5814. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Perez, A.; Bermeo, S.; Simmerling, C. Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins. J. Chem. Theory Comput. 2015, 11, 3714–3728. [Google Scholar] [CrossRef] [Green Version]
- Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 2016, 145, 170901. [Google Scholar] [CrossRef] [Green Version]
- Veltri, D.; Kamath, U.; Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 2018, 34, 2740–2747. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nussinov, R.; Tsai, C.-J.; Shehu, A.; Jang, H. Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules 2019, 24, 637. https://doi.org/10.3390/molecules24030637
Nussinov R, Tsai C-J, Shehu A, Jang H. Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules. 2019; 24(3):637. https://doi.org/10.3390/molecules24030637
Chicago/Turabian StyleNussinov, Ruth, Chung-Jung Tsai, Amarda Shehu, and Hyunbum Jang. 2019. "Computational Structural Biology: Successes, Future Directions, and Challenges" Molecules 24, no. 3: 637. https://doi.org/10.3390/molecules24030637
APA StyleNussinov, R., Tsai, C. -J., Shehu, A., & Jang, H. (2019). Computational Structural Biology: Successes, Future Directions, and Challenges. Molecules, 24(3), 637. https://doi.org/10.3390/molecules24030637