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Abstract: Membrane distillation (MD) has recently gained considerable attention as a valid process
for the production of fresh-water due to its ability to exploit low grade waste heat for operation and
to ensure a nearly feed concentration-independent production of high-purity distillate. Limitations
have been related to polarization phenomena negatively affecting the thermal efficiency of the process
and, as a consequence, its productivity. Several theoretical models have been developed to predict
the impact of the operating conditions of the process on the thermal polarization, but there is a
lack of experimental validation. In this study, electrospun nanofiber membranes (ENMs) made of
Poly(vinylidene fluoride) (PVDF) and doped with (1, 10-phenanthroline) ruthenium (II) Ru(phen)3

were tested at different operating conditions (i.e., temperature and velocity of the feed) in direct
contact membrane distillation (DCMD). The temperature sensitive luminophore, Ru(phen)3, allowed
the on-line and non-invasive mapping of the temperature at the membrane surface during the process
and the experimental evaluation of the effect of the temperature and velocity of the feed on the
thermal polarization.
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1. Introduction

The lack of sufficient available fresh water resources is one of the major pervasive problems
afflicting people throughout the world. In fact, more than one billion people lack access to drinking
water and 3,900 children a day die from diseases transmitted through unsafe water [1].

In this scenario, membrane technology plays a key role in order to meet water needs by wastewater
treatment and desalination [2,3]. Several membrane-based technologies, such as reverse osmosis (RO),
nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF), are currently being used to convert
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seawater, brackish, and wastewater into potable water [4]. Nowadays, ca. 50% of the world’s total
desalination capacity is based on membranes using the concept of reverse osmosis [5]. Membrane
distillation (MD) is a promising technology involving a microporous hydrophobic membrane that
guarantees the transport of a considerable amount of water vapor through its void space, disallowing
the permeation of water in liquid form containing dissolved non-volatile compounds (i.e., salts) [6].
MD presents several advantages, such as the use of low grade waste heat; the production of ultra-pure
products; and, in particular, the possibility to treat the mixtures with concentrations beyond the
operational limits of the conventional pressure-driven membrane processes (i.e., RO) [7]. The slow
growth of membrane distillation has been related to the unavailability of appropriate membranes
for MD applications and limited investigations carried out on module and processes design [8].
In particular, fouling, thermal polarization, and membrane wetting are considered major drawbacks in
the application of MD technologies.

However, thanks to the recent and growing extensive research activities carried out in various
areas of MD, the process has become much more attractive due to the availability of membranes with
an enhanced performance and the possibility to utilize alternative energy sources [8].

In the last years, much effort has been devoted to developing membranes with tailored properties
designed for MD applications. Poly(vinylidene fluoride) (PVDF) has been extensively studied as a
potential candidate in MD with regard to its outstanding properties, such as its mechanical, thermal,
and chemical resistance, and hydrophobicity. PVDF is also advantageous because of its membrane
forming property and solubility in a wide range of solvents, which are severe limitations for other
common hydrophobic polymers, such polytetrafluoroethylene (PTFE) and polypropylene (PP), to be
used in traditional phase inversion techniques [9].

In the past few years, nanotechnology has been gaining momentum in membrane preparation,
fabrication, and modification: nanoparticles and nanofibers are widely employed to enhance the basic
properties of membrane materials or to add novel properties and functionalities to the membrane [10].
For instance, electrospun polymeric nanofibers exhibit appealing properties appropriate for MD
applications, such as a high surface roughness combined with an excellent porosity and mechanical
robustness [11]. In fact, electrospun nanofiber membranes (ENMs) consist of high flux and thermally
efficient membranes due to their high porosity, above 80%, with interconnected structures and a high
hydrophobicity [12,13].

In recent studies, luminophores, molecules emitting light as a consequence of the exposure to
an excitation source, have been proposed as an innovative technology for monitoring membrane
processes. In particular, tris (1, 10-phenanthroline) ruthenium (II) (Ru(phen)3) was immobilized in
different membranes, allowing in-situ and non-invasive monitoring and/or mapping of oxygen and
temperature on the membrane surface [14–16]. Moreover, transition metal polypyridyl complexes
such as Ru(phen)3 are successfully employed in the development of fibre-optic oxygen sensors for
oceanography due to their non-sensitivity towards the salinity [17]. Moreover, PVDF electrospun
nanofibers doped with Ru(phen)3 were successfully applied by the authors in direct contact membrane
distillation (DCMD), and obtained a membrane that, by using a specifically designed membrane
module, allowed them to map the temperature on the membrane’s surface on-line [18]. In particular,
as proof of concept, a map of the temperature distribution on the membrane surfaces at both feed and
permeate sides was obtained when working at fixed operating conditions.

On the basis of the positive results obtained, the aim of the present study was to continue the
investigation, focusing on the optimization and evaluation of the effects of the operating conditions on
the performance of the MD process. PVDF membranes prepared via electrospinning loaded with the
Ru(phen)3 probe were tested in DCMD by varying the temperature and the velocity of the feed. The
luminophore allowed us to non-invasively map the temperature on the membrane surfaces, whereas
an IR-camera monitored the bulk temperature of the water streams, experimentally demonstrating the
evident effect of both investigated parameters (temperature and feed velocity) on the driving-force
and, as a consequence, on the performance of the process.
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2. Materials and Methods

2.1. Materials

Poly (vinylidenefluoride) Solef® 6012(PVDF) was kindly supplied by Solvay Specialty Polymers
(Bollate, Italy). Solvents such as N,N Dimethylformamide (DMF, 99.8%, Sigma Aldrich, Spain) and
acetone (Panreac, Spain) were employed to dissolve PVDF. Lithium chloride (LiCl, Fisher Chemicals,
Spain) was employed as an additive. The luminophore tris(phenantroline)ruthenium(II) chloride
(Ru(phen)3) was purchased from Sigma–Aldrich.

2.2. Membrane Preparation by Electrospinning

The method for the preparation of PVDF electrospun membranes was widely described in a
previous paper [18]. Briefly, the molecular probe Ru(phen)3 (0.83 wt% with respect to the PVDF)
and the additive LiCl (0.43 wt% with respect to PVDF) were firstly dispersed in the mixture of
DMF/Acetone. It has been demonstrated that LiCl plays a key role in adjusting the viscosity and, in
particular, the conductivity of the solution, allowing for the preparation of defect-free fibers [18–21].
In fact, LiCl plays a key role in order to favor the formation of nano-fibers by generating a higher
charge density on the surface of the charged jet, thus facilitating the electrospinning of the polymeric
solution [19].

Subsequently, the PVDF dope solution was prepared by solubilizing the polymer at a
concentration of 10 wt% in the blend of DMF/Acetone (6:4 wt:wt) containing LiCl and Ru(phen)3 by
stirring overnight at a temperature of 70 ◦C.

After cooling at room temperature, the PVDF solution was transferred in a syringe and electrospun
by means of a Yflow 2.2 D500 electrospinner with a 20-gauge needle used to obtain the fibers (Figure 1).
Table 1 summarizes the optimized operating conditions of the electrospinning process. These operating
conditions were selected in order to favor the evaporation of the solvents, to avoid the formation of
beads, and to obtain a self-consistent membrane.

Molecules 2018, 23, x FOR PEER REVIEW  3 of 13 

 

2.1. Materials 

Poly (vinylidenefluoride) Solef® 6012(PVDF) was kindly supplied by Solvay Specialty Polymers 
(Bollate, Italy). Solvents such as N,N Dimethylformamide (DMF, 99.8%, Sigma Aldrich, Spain) and 
acetone (Panreac, Spain) were employed to dissolve PVDF. Lithium chloride (LiCl, Fisher Chemicals, 
Spain) was employed as an additive. The luminophore tris(phenantroline)ruthenium(II) chloride 
(Ru(phen)3) was purchased from Sigma–Aldrich. 

2.2. Membrane Preparation by Electrospinning 

The method for the preparation of PVDF electrospun membranes was widely described in a 
previous paper [18]. Briefly, the molecular probe Ru(phen)3 (0.83 wt% with respect to the PVDF) and 
the additive LiCl (0.43 wt% with respect to PVDF) were firstly dispersed in the mixture of 
DMF/Acetone. It has been demonstrated that LiCl plays a key role in adjusting the viscosity and, in 
particular, the conductivity of the solution, allowing for the preparation of defect-free fibers [18–21]. 
In fact, LiCl plays a key role in order to favor the formation of nano-fibers by generating a higher 
charge density on the surface of the charged jet, thus facilitating the electrospinning of the polymeric 
solution [19]. 

Subsequently, the PVDF dope solution was prepared by solubilizing the polymer at a 
concentration of 10 wt% in the blend of DMF/Acetone (6:4 wt:wt) containing LiCl and Ru(phen)3 by 
stirring overnight at a temperature of 70 °C. 

After cooling at room temperature, the PVDF solution was transferred in a syringe and 
electrospun by means of a Yflow 2.2 D500 electrospinner with a 20-gauge needle used to obtain the 
fibers (Figure 1). Table 1 summarizes the optimized operating conditions of the electrospinning 
process. These operating conditions were selected in order to favor the evaporation of the solvents, 
to avoid the formation of beads, and to obtain a self-consistent membrane. 

Table 1. Operating conditions of the electrospinning process. 

Flow rate (mL h−1) 1 
Needle height (cm) 15 
Needle voltage (kV) +16 

Collector voltage (kV) −2 

Finally, the produced membranes were submitted to thermal post-treatment (overnight at 130 
°C) in order to facilitate the linkage of the network made of PVDF nanofibers. 

 

Figure 1. Scheme and picture (http://www.yflow.com) of the electrospinning set-up. 

2.3. Membranes Characterization 

The morphology of the ENM PVDF membrane was observed using a Scanning Electron 
Microscope (SEM) (Zeiss-EVO MA10 instrument, Milan, Italy). The membrane was coated with a thin 
gold layer by sputtering using a Quorum Q150 RS sputter (Quorum Technologies, Laughton, East 
Sussex, UK) in order to enhance the membrane conductivity and prevent electrical charging. 

The structure of the ENM PVDF was also observed by using a Leica SP8 confocal laser scanning 
microscope (Leica Microsystems GmbH, Wetzla, Germany). The microscope was equipped with an 

Figure 1. Scheme and picture (http://www.yflow.com) of the electrospinning set-up.

Table 1. Operating conditions of the electrospinning process.

Flow rate (mL h−1) 1

Needle height (cm) 15
Needle voltage (kV) +16

Collector voltage (kV) −2

Finally, the produced membranes were submitted to thermal post-treatment (overnight at 130 ◦C)
in order to facilitate the linkage of the network made of PVDF nanofibers.

2.3. Membranes Characterization

The morphology of the ENM PVDF membrane was observed using a Scanning Electron
Microscope (SEM) (Zeiss-EVO MA10 instrument, Milan, Italy). The membrane was coated with

http://www.yflow.com
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a thin gold layer by sputtering using a Quorum Q150 RS sputter (Quorum Technologies, Laughton,
East Sussex, UK) in order to enhance the membrane conductivity and prevent electrical charging.

The structure of the ENM PVDF was also observed by using a Leica SP8 confocal laser scanning
microscope (Leica Microsystems GmbH, Wetzla, Germany). The microscope was equipped with an
Argon laser (65 mW) for the excitation of the Ru(phen)3 immobilized in PVDF nano-fibers at 458 nm.
The Leica SP8-Spectral Scan-Head allows the acquisition of 2D images in the focal plane by scanning
the laser beam focused by a Leica HCX IRAPO 25X/095 NA IRAPO water immersion objective with a
working distance of 2.5 mm. Pictures were collected with a frequency of 400 Hz and a pixel to voxel
size ratio of 100 nm with a frame acquisition time ranging from 1.5 s up to 100 s (from 500 × 500
pixels to 4096 × 4096 pixels, respectively). The emission rising from the membrane was collected in
the epi-detection by a photomultiplier tube (PMT) set in the range of 520–750 nm by the use of the
filter-free spectral detecting system.

The hydrophobicity of PVDF ENM was evaluated by measuring the contact angle with distilled
water using a CAM 200 contact angle meter (KSV Instruments, Finland), according to the sessile drop
method at ambient temperature.

Membrane porosity was evaluated by the gravimetric method consisting of weighing the
membrane in dry and wet conditions after immersion for 24 h in kerosene [22]. The porosity was
estimated according to the following equation:

P =

wh−wd
ρw

wd
ρPVDF

+ wh−wd
ρw

; (1)

where wh is the weight of the wet membrane; wd is the weight of the dry membrane; ρw is the kerosene
density (0.82 g cm−3); and ρPVDF is the PVDF density (1.72 g cm−3) [22].

The pore size was determined using a PMI Capillary Flow porometer (Porous Materials Inc.,
Itacha, NY, USA), according to the procedure reported in the literature [23]. Briefly the PVDF ENM
was immersed for 24 h in Porewick (16 dyne cm−1) and then tested in the membrane module of the
porometer using a wet-up/dry-up method programmed by the software Capwin.

The liquid entry pressures (LEPs) of the PVDF ENM was evaluated by accommodating a
membrane sample in a chamber filled-up with 200 mL of DI water at 20 ◦C: the pressure of N2

in the chamber was increased at a constant rate of 0.1 bar every 10 min until the water permeated
through the membrane.

2.4. DCMD Experiments and on-Line Monitoring of the Membrane Surfaces Temperature

DCMD experiments were performed using the set-up shown in Figure 2a. The feed and permeate
temperatures were controlled by a heater and a cooler, respectively. The temperatures of both feed and
distillate streams were monitored by means of Platinum thermistors (PT100, Delta OHM, accuracy ±
0.1 ◦C) placed in proximity to the inlets and outlets of the membrane module. The distillate stream
was kept at an inlet temperature of ca. 18–19 ◦C, whereas the feed was heated-up to 40, 50, and 60 ◦C.

The streams were fed co-currently by means of two peristaltic pumps (Masterflex® 7518-10).
No mesh/spacer was used at both feed and permeate sides. At the feed side, the channel for the stream
flow was thicker (1.7 cm) than the distillate side. Larger channel gaps were needed to investigate the
effect of the feed velocity (Reynolds) without increasing the pressure drops.

The feed (distilled water) flow rate varied from 25 L·h−1 to 75 L·h−1, corresponding to feed
velocities ranging from 0.008 m·s−1 to 0.024 m·s−1, whereas the distillate flow rate was fixed at
25 L·h−1 and the corresponding velocity was 0.055 m·s−1. At 60 ◦C, the Reynolds value at the feed
side (equivalent diameter of 2.54 cm) ranged from 417 to 1250, while at the distillate side (equivalent
diameter of 0.317 cm), it was 178 at 20 ◦C. The trans-membrane flux was determined by weighing the
distillate produced using an analytical balance (Europe 6000, Gibertini, Italy).
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The PVDF electrospun membrane containing molecular probes was placed in a membrane module
made of Nylon (overall size: 16 cm × 5.5 cm; effective size: 15 cm × 4 cm; active area: 60 cm2) equipped
with a polymeric transparent window in the near-UV/visible region, allowing the optical observation
(Figure 2b). In fact, it was possible to record the emission rising from the molecular probe immobilized
in the PVDF membrane by means of a bifurcated fiber-optical bundle transparent in the UV/Visible
range (Ocean Optics). One branch of the bifurcated fiber-optical was connected to LED (emitting at
450 nm) for the excitation of Ru(phen)3 and the other branch to a spectrofluorimeter (Avantes) to
collect the emission from the molecular probe. The membrane module was equipped with a special
non reflective black cover with 42 holes, allowing us to fix the spot of spectroscopic acquisition on the
membrane surface, allocating the optical fiber at 90◦ with respect to the membrane surface. The 42
spots of observation are displaced in three rows and 14 columns spaced 1 cm apart from each other.
The acquisition time of spectra was set at 0.2 s and 10 spectra were averaged for each measurement in
order to obtain the maximum signal to noise ratio.

The calibration curves were obtained for each of the 42 spots by plotting the amplitude of
the phosphorescence emitted by the molecular probe at 572 nm as a function of the membrane
temperature. In this phase, the two water streams (feed and distillate) were kept at the same
temperature, guaranteeing a homogeneous temperature in the membrane module and avoiding
heat-loss through the membrane. The surface adjacent to the feed was calibrated at a temperature
ranging from 40 ◦C to 60 ◦C, whereas the side of the membrane exposed to the distillate side was
calibrated at 18 ◦C, 25 ◦C, and 35 ◦C.

As expected, in all the cases, the intensity of the emission of Ru(phen)3 linearly decreased by
increasing the temperature: i.e., the phosphorescent emission was higher in proximity of the outlet
rather than in the inlet membrane module. In fact, the Arrhenius-type dependence of the intensity of
the emission with respect to the temperature attributed to the thermal-driven non-radiative decay of
the excited state is usually well-approximated to a linear trend at low temperature [24].

The bulk temperature of water streams (feed and distillate) was monitored using an IR CAMERA
(model FLIR E40, sensitivity of 0.07 ◦C at 30 ◦C, resolution of 160×120 pixels, spectral range from
7.5–13 µm).
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3. Results

3.1. Membrane Characterization

The PVDF membrane produced consisted of a 3D network of fibers, as shown in Figure 3a. PVDF
electrospun nanofibers presented a diameter of around 232 ± 48 nm, whereas the membrane thickness
was 40 µm. The network of nanofibers produced a microporous structure with desired properties
in MD application. In fact, the membrane presented a porosity of 89 ± 1% and a mean pore size of
0.75 ± 0.04 µm. These properties allow the PVDF ENM to minimize its resistance to vapor transport,
whereas its high hydrophobic character (contact angle of 115 ± 4◦) avoids the permeation of liquid
water, preventing the wetting of pores till a hydrostatic pressure of 1 bar (LEP).

The 3D network of the fibers was also visible by observing the PVDF ENM with the Scanning
Electron Microscope (Figure 3a) and confocal microscope (Figure 3b). In fact, fibers exposed to light
excitation emitted a considerable amount of light due to the photochemical activity of Ru(phen)3

widely employed as a molecular probe because of its outstanding properties, such as its brightness
and relatively long lifetime. The picture evidences the presence of the nanofibers and sub-micrometric
channels for water vapor transport.
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The phosphorescent spectra collected in Figure 4a confirmed the emission of the PVDF ENM
due to the immobilization of the complex of Ru in the nanofibers. In fact, the membrane produces an
intense and broad emission in the visible region, with a maximum of emission at 572 nm. The intensity
of the emission of the PVDF ENM at 20 ◦C was stable over the testing campaign (experimental error
below 3% for two months), evidencing the chemical stability of the molecular probe encapsulated in
the polymeric nanofibers and the absence of phenomena of releasing of the molecular probes from
the polymeric matrix to the water streams. This was confirmed by the absence of [Ru(phen)3]2+ in
both feed and distillate streams since no luminescent activity was observed by analyzing the water
streams. This was attributed to strong electrostatic attraction forces between the positively charged
([Ru(phen)3]2+) complex and the negatively charged fluoropolymer (PVDF).

Moreover, the intensity of the emission dramatically decreased when increasing the temperature,
as expected. Figure 4b shows the linear dependence of the intensity of the emission with respect to
the temperature. This effect is due to the fact that the increase of the temperature favors internal
conversion of the energy to vibrational energy, causing a decrease of the photochemical activity [25].
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3.2. DCMD Performance

Figure 5 summarizes the effect of the feed temperature on the performance of the PVDF
electrospun nanofibers membrane in terms of flux. The trans-membrane flux is significantly affected by
the feed temperature, following an Arrhenius trend. In particular, the flux drops from 14.4 kg·m−2·h−1

to 2.7 kg·m−2·h−1 by reducing the temperature from 60 ◦C to 40 ◦C. This is mostly attributed to the fact
that the increase of the temperature of the feed produces a positive effect on the driving-force of DCMD
processes. In fact, according to the Antoine equation, the vapor pressure increases exponentially with
temperature, therefore exponentially affecting the productivity of the process [26].
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of 0.008 m·s−1.

In all tests, the flux varied during the first hour of operation, and was then stable over a running
time of 3 h. In fact, the experimental error of the flux was evaluated to be lower than 3% by measuring
the flux every 15 min, and then confirming the stability of PVDF ENM.

A positive effect of the flux was also observed by increasing the velocity of the feed. In fact, the
flux increased from 14.4 kg·m−2·h−1 to 18.2 kg·m−2·h−1 by speeding up the feed stream from 0.008
m·s−1 to 0.024 m·s−1 (Figure 6).
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This is due to the fact that the increase of the feed velocity enhanced mixing in the flow channel
and reduced the boundary layer from the feed stream to the membrane surface as a consequence,
improving the heat transfer coefficient [27,28]. In fact, the increase of the feed velocity of a factor
of 3 increased the flux ca. 27%. It has to be pointed out that the indicated feed velocity values, in
Figures 5–8, were calculated by considering the inner cross section of the module (17 × 50 mm), as
fully developed profiles. The feed velocities investigated correspond to Reynolds values ranging from
417 to 1250. As a rough analysis, the trend of the trans-membrane flux follows that of Re0.405 quite
well when the Reynolds value is ≥1000, which indicates a laminar regime.

Even though it is difficult to compare the membrane performance with literature data, due to the
fact that the operating conditions and the module designs reported in the literature are quite different
to each other, it is possible to notice in Table 2 that the developed PVDF membrane prepared via
electrospinning presented comparable permeability values with respect to commercial unsupported
membranes, as taken from [29]. In particular, in the table, the most commonly used hydrophobic
materials are reported.

Table 2. Comparison of the permeability values among the membrane produced in this work and those
reported in ref. [29].

Producer-Trade
Name Material Feed LEP (bar) dp

(µm) ε (%)
Permeability
(kgh−1m−2

bar−1)

Operating
Conditions

This work PVDF Distilled
water 1.0 0.75 89 237 Tf = 60 ◦C, Td = 20 ◦C,

v = 0.024 m·s−1

Millipore
Durapore HVHP PVDF Seawater 2.0 0.45 75 214 Tf = 60 ◦C, Td = 45 ◦C

v = 0.13 m·s−1

Membrana
Accurel PP PP Seawater 2.5 0.2 83 237 Tf = 60 ◦C, Td = 45 ◦C

v = 0.13 m·s−1

Donaldson
Tetratex PTFE Seawater 9.9 0.2 83 259 Tf = 60 ◦C, Td = 45 ◦C

v = 0.13 m·s−1

3.3. Evaluation of the Effect of the Feed Temperature and Velocity on Thermal Polarization

Membrane distillation is a thermally-driven separation process, in which the driving force
is the vapor pressure difference created across the membrane. In particular, in DCMD processes,
heat is transported through the membrane by two different mechanisms: latent heat of evaporation
and conductive heat transported across the membrane, which negatively affects the driving force,
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representing heat loss. The evaporation process is also a cause of temperature polarization, leading to
a temperature reduction at the feed-membrane interface due to feed evaporation and to a temperature
increase at the membrane-permeate side as a consequence of the vapor condensation. Furthermore,
to reach the membrane surface, heat moves from the bulk of the feed through the boundary layer,
and as a consequence, the temperature at the membrane surface is lower than that in the bulk phase.
The same happens at the cold side, where the vapor transported from the feed condenses: due to
the presence of the boundary layer, the temperature at the membrane surface is higher than that of
the bulk cold stream. To take into account both aspects, the thermal efficiency of DCMD processes is
quantified by the Temperature Polarization Coefficient (TPC) evaluated as the ratio between the actual
driving force (across the membrane) and the theoretical driving force (across the streams bulk) and is
expressed mathematically as follows:

TPC =
TF,M − TD,M

TF − TD
(2)

where TD is the temperature of the bulk distillate; TD,M is the membrane temperature at the distillate
side; TF is the temperature of the bulk feed; and TF,M is the membrane temperature at the feed
side [29,30]. The higher the TPC, the better the process performance. TPC can vary between 1 (when
no polarization occurs) and 0 (in the case of complete polarization). Usually, the value of TPC lies
between 0.4–0.7 for DCMD [31].

The temperature on the membrane surfaces, i.e., TF,M and TD,M, was evaluated by processing
the phosphorescent emissions of Ru(phen)3 through the holes displaced in three rows (x-axis) and 14
columns (y-axis) spaced 1 cm apart (Figure 2b); whereas the temperatures of the bulk streams, i.e., TF

and TD, were monitored by the IR camera with a spatial resolution of 0.1 cm. The 10 values of the
temperatures of the feed or distillate corresponding to the area of observation of the phosphorescent
measurements were averaged, and in this case, a map with a resolution of 1 cm was also obtained. Since
the measurements of TF and TD have been acquired with a spatial resolution 10 times greater than the
temperature on the membrane surfaces, we extracted an average value of TF and TD for every 1 cm.

Finally, the thermal efficiency of the DCMD process was evaluated on each of the 42 spots and the
behaviour of TPC along the membrane module (y-axis) was then extracted by averaging its values
along the x-axis.

Figure 7 shows the trend of the mean value of TPCs along the membrane module at different inlet
feed temperatures (Tfeed = 40, 50, and 60 ◦C).
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Figure 7 evidences that the thermal efficiency of the process dramatically decreases along the
membrane. In fact, in all the cases, the TPC in proximity to the inlet of the membrane module (low
value of y) is much higher than the one observed close to the membrane outlet (high value of y).

As already pointed out, this effect is due to heat spent to produce vapor and transported by the
membrane as a consequence of the DCMD process, as well as some heat loss towards the environment
that reduces the feed temperature. In addition, Figure 7 shows the key role of the feed temperature in
the thermal efficiency of the process depicting the tendency of the TPC. This is due to the fact that high
temperatures of the feed imply an increasing of both convective and conductive heat fluxes through
the membrane, causing a more pronounced temperature gradient between the bulk of the streams and
the correspondent membrane surfaces [32].

Figure 8 summarizes the effect of the feed velocity on the thermal efficiency of the DCMD process
by showing the trend of TPC at different feed velocities. The impact of the feed velocity on the thermal
efficiency of the process is evident: the TPC increased by increasing the feed velocity. This is a result of
the mixing effect and reduction of the boundary layer resistance obtained when working at higher
Reynolds values, which moved from 417 (at 0.008 m/s) to 1250 (at 0.024 m/s) [33].
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At low values of the feed velocity, the transfer of heat from the bulk to the membrane surface is
hindered by the boundary layer and low values of the TPC are observed as a consequence. On the
other hand, an increase in feed velocity improves the Reynolds number of the streams, favors the
mixing of the fluid, and decreases the thickness of the boundary layer [34]. The final effect is the
reduction of the difference between the temperature at the membrane surface and the bulk and, as
a consequence, an increasing of the TPC. It has to be noticed that TPC decay at the extremities of
the membrane module was observed, especially at low velocities. This trend could be attributed to
entrance and exit effects: the fluid enters the module from a central hole (i.d., 8 mm) and is then spread
on the membrane surface for the first centimeters, reducing its velocity. Following this, it moves at a
constant velocity (fully developed profile), until it reaches the last part of the module, where it has to
converge towards the exit central hole, further reducing its velocity and, then, the TPC.

4. Conclusions

PVDF ENM doped with Ru(phen)3 was tested in DCMD processes by varying the temperature
and the velocity of the feed stream. The experiments show the crucial role of the temperature of the
feed, which affects the driving-force of the process. In fact, the flux increases from 2.7 kg·m−2·h−1 to
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14.4 kg·m−2·h−1 by raising the temperature of the feed from 40 ◦C to 60 ◦C. A positive effect on the flux
was also observed by increasing the velocity of the feed from 0.008 m·s−1 to 0.024 m·s−1, attributed to
the reduction of the thermal polarization phenomena achievable by increasing the Reynolds number
of the feed from 417 to 1250.

The immobilization of Ru(phen)3 as temperature-sensitive luminophore allowed us to study the
dissipation of heat along the membrane module, producing a scattering of the temperature on the
membrane surfaces. The highest flux was obtained at a feed temperature of 60 ◦C and velocity of
0.024 m·s−1. In these conditions, the TPC varied between 0.75 and 0.4 at the inlet and outlet of the
module, respectively. In particular, it was observed that the TPC was basically constant along the
membrane module (TCP~0.6 between 2 cm and 12 cm), whereas it dropped in proximity of the inlet
and the outlet of the membrane module, due to entrance/exit effects.

This work confirmed that the proposed approach allows us to calculate experimentally, in
a non-invasive way, the thermal polarization of the system, as a function of the main operating
parameters of the DCMD process. In fact, the employment of optical techniques based on the use of
the molecular probe for monitoring the temperature at membrane surfaces and of an IR-camera
for the detection of the temperature of the bulk streams can be considered a powerful tool to
design high-performance membrane modules for DCMD and to optimize the operating conditions of
the process.
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