Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Entada spiralis Stem Bark and Isolation of the Active Constituents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction and Fractionation
2.2. Total Phenolic Contents (TPC)
2.3. Total Flavonoid Contents (TFC)
2.4. In Vitro Antioxidant Activity
2.4.1. Dot-Blot Staining Assay Result
2.4.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
2.4.3. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
2.5. In Vitro Digestive Enzymes Inhibitory Activity
2.5.1. In Vitro α-Amylase Inhibitory Assay
2.5.2. In Vitro α-Glucosidase Inhibitory Assay
2.6. Identification of the Isolated Compounds
3. Materials and Methods
3.1. General Information
3.2. E. spiralis Stem Bark Preparation and Extraction
3.3. Fractionation of the Active Extract
3.4. Estimation OF Total Phenolic Content (TPC)
3.5. Estimation of Total Flavonoid Contents (TFC)
3.6. In Vitro Antioxidant Activity Assay
3.6.1. Dot-Blot Staining Assay
3.6.2. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
3.6.3. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
3.7. In Vitro Digestive Enzymes Inhibitory Activity
3.7.1. In Vitro α-Amylase Assay Inhibitory Assay
3.7.2. In Vitro α-Glucosidase Inhibitory Assay
3.8. Active Principle Isolation through Column Chromatography
3.9. Isolation Using Chromatotron
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, J.T.; Wang, A.; Mehendale, S.; Wu, J.; Aung, H.H.; Dey, L.; Yuan, C.S. Anti-diabetic effects of Gymnema yunnanense extract. Pharmacol. Res. 2003, 47, 323–329. [Google Scholar] [CrossRef]
- Sudha, P.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC Complement Altern. Med. 2011, 11, 5–15. [Google Scholar]
- Kazeem, M.I.; Dansu, T.V.; Adeola, S.A. Inhibitory effect of Azadirachta indica A. Juss leaf extract on the activities of α-amylase and α-glucosidase. Pakistan. J. Bio. Sci. 2013, 16, 1358–1362. [Google Scholar] [CrossRef]
- Hilmi, Y.; Abushama, M.F.; Abdalgadir, H.; Khalid, A.; Khalid, H. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional Sudanese plants with anti-diabetic potential. BMC Complement. Altern. Med. 2014, 14, 149. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.E.; Montgomery, P.A. Acarbose: An α-glucosidase inhibitor. Am. J. Health-Syst. Pharm. 1996, 53, 2277–2290. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: A comparative review. Diabetes Obes. Metab. 2011, 13, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Nair, S.S.; Kavrekar, V.; Mishra, A. In vitro studies on α-amylase and α-glucosidase inhibitory activities of selected plant extracts. Euro. J. Exp. Bio. 2013, 3, 128–132. [Google Scholar]
- Bhattacherjee, A.; Ghosh, T.; Sil, R.; Datta, A. Isolation and characterization of methanol-soluble fraction of Alternanthera philoxeroides (Mart.)–evaluation of their antioxidant, α-glucosidase inhibitory and antimicrobial activity in in vitro systems. Nat. Prod. Res. 2014, 28, 2199–2202. [Google Scholar] [CrossRef]
- Wickramaratne, M.N.; Punchihewa, J.C.; Wickramaratne, D.B.M. In vitro α-amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern. Med. 2016, 16, 466–470. [Google Scholar] [CrossRef]
- Benalla, W.; Bellahcen, S.; Bnouham, M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors. Curr. Diabetes Rev. 2010, 6, 247–254. [Google Scholar] [CrossRef]
- Bhat, M.; Zinjarde, S.S.; Bhargava, S.Y.; Kumar, A.R.; Joshi, B.N. Antidiabetic Indian plants: A good source of potent amylase inhibitors. Evid.-Based Complement. Altern. Med. 2011. [Google Scholar] [CrossRef] [PubMed]
- Tabopda, T.K.; Ngoupayo, J.; Liu, J.; Mitaine-Offer, A.C.; Tanoli, S.A.K.; Khan, S.N.; Luu, B. Bioactive aristolactams from Piper umbellatum. Phytochemistry 2008, 69, 1726–1731. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Du, Y.J.; Song, H.C. α-Glucosidase and α-amylase inhibitory activities of guava leaves. Food Chem. 2010, 123, 6–13. [Google Scholar] [CrossRef]
- Luyen, N.T.; Hanh, T.T.H.; Binh, P.T.; Dang, N.H.; Van Minh, C.; Dat, N.T. Inhibitors of α-glucosidase, α-amylase and lipase from Chrysanthemum morifolium. Phytochem. Lett. 2013, 6, 322–325. [Google Scholar] [CrossRef]
- Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process 2011, 89, 217–233. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Balmus, I.M.; Ciobica, A.; Trifan, A.; Stanciu, C. The implications of oxidative stress and antioxidant therapies in inflammatory bowel disease: Clinical aspects and animal models. Saudi J. Gastroenterol. 2016, 22, 3–17. [Google Scholar] [CrossRef]
- Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Williams, L.K.; Zhang, X.; Caner, S.; Tysoe, C.; Nguyen, N.T.; Wicki, J.; Williams, D.E.; Coleman, J.; McNeill, J.H.; Yuen, V.; et al. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nat. Chem. Biol. 2015, 11, 691–696. [Google Scholar] [CrossRef]
- Diallo, D.; Marston, A.; Terreaux, C.; Toure, Y.; Smestad, P.B.; Hostettmann, K. Screening of Malian medicinal plants for antifungal, larvicidal, molluscicidal, antioxidant and radical scavenging activities. Phytother. Res. 2001, 15, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Guissou, I.P.; Nacoulma, G.O.; Faso, B. Evaluation of antioxidant activity, total phenolic and flavonoid contents of Entada africana Guill. et Perr. (Mimosaceae) organ extracts. Res. J. Med. Sci. 2010, 4, 81–87. [Google Scholar]
- Njayou, F.N.; Aboudi, E.C.E.; Tandjang, M.K.; Tchana, A.K.; Ngadjui, B.T.; Moundipa, P.F. Hepatoprotective and antioxidant activities of stem bark extract of Khaya grandifoliola (Welw) C. DC and Entada africana Guill. et Perr. J. Nat. Prod. 2013, 6, 73–80. [Google Scholar]
- Gautam, B.; Vadivel, V.; Stuetz, W.; Biesalski, H.K. Bioactive compounds extracted from Indian wild legume seeds: Antioxidant and type II diabetes–related enzyme inhibition properties. Int. J. Food Sci. Nutr. 2012, 63, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Tunsaringkarn, T.; Rungsiyothin, A.; Ruangrungsi, N. α-Glucosidase inhibitory activity of Thai Mimosaceous plant extracts. J. Health Res. 2008, 22, 29–33. [Google Scholar]
- Harun, A.; So’ad, S.Z.M.; Hassan, N.M.; Ramli, N.K.C.M. In vitro antidermatophytic activity of methanolic fractions from Entada spiralis Ridl. stem bark and its bioautographic profile. Pertanika. J Sci. Technol. 2014, 22, 113–121. [Google Scholar]
- Harun, A.; So’ad, S.Z.M.; Hassan, N.M. Bioassay guided isolation of an antidermatophytic active constituent from the stem bark of Entada spiralis Ridl. Malaysian J. Anal. Sci. 2015, 19, 752–759. [Google Scholar]
- Tibiri, A.; Rakotonandrasana, O.; Nacoulma, G.O.; Banzouzi, J.T. Radical scavenging activity, phenolic content and cytotoxicity of bark and leaves extracts of Entada africana Guill. and Perr. (Mimosaceae). J. Biol. Sci. 2007, 7, 959–963. [Google Scholar]
- Pakutharivu, T.; Suriyavadhana, M. In vitro antioxidant activity of Entada pursaetha, Toddalia aculeata, and Ziziphus mauritiana. Phcog. J. 2010, 2, 102–106. [Google Scholar]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant. Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Z.; Zhu, H.; Zhang, W.; Chen, Y. In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complement. Altern. Med. 2016, 16, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.H.; Wu, S.H.; Hsieh, J.F. Isolation and characterization of α- glucosidase inhibitory constituents from Rhodiola crenulata. Food. Res. Int. 2014, 57, 8–14. [Google Scholar] [CrossRef]
- Serafim, T.L.; Carvalho, F.S.; Marques, M.P.; Calheiros, R.; Silva, T.; Garrido, J.; Milhazes, N.; Borges, F.; Roleira, F.; Silva, E.T.; et al. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol. 2011, 24, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Eldahshan, O.A. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr. Res. J. Biol. Sci. 2011, 3, 52–55. [Google Scholar]
- Alhassan, M.A.; Ahmed, Q.U.; Latip, J.; Shah, S.A.A. A new sulphated flavone and other phytoconstituents from the leaves of Tetracera indica Merr. and their alpha-glucosidase inhibitory activity. Nat. Prod. Res. 2018, 1–8. [Google Scholar] [CrossRef]
- Ali, H.A.; Chowdhury, A.K.; Rahman, A.K.; Borkowski, T.; Nahar, L.; Sarker, S.D. Pachypodol, a flavonol from the leaves of Calycopteris floribunda, inhibits the growth of CaCo2 colon cancer cell line in vitro. Phytother. Res. 2008, 22, 1684–1687. [Google Scholar] [CrossRef]
- Watanabe, M. Catechins as antioxidants from buckwheat (Fagopyrum esculentum Moench) groats. Agric. Food Chem. 1998, 46, 839–845. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.S.S. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem. 2009, 114, 1271–1277. [Google Scholar] [CrossRef]
- Ahmed, I.A.; Mikail, M.A.; Bin Ibrahim, M.; Bin Hazali, N.; Rasad, M.S.B.A.; Ghani, R.A.; Wahab, R.A.; Arief, S.J.; Yahya, M.N.A. Antioxidant activity and phenolic profile of various morphological parts of underutilised Baccaurea angulata fruit. Food Chem. 2015, 172, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Sarian, M.N.; Ahmed, Q.U.; Siti Zaiton, M.S.; Alhassan, M.A.; Suganya, M.; Vikneswari, P.; Sharifah, N.A.S.M.; Alfi, K.; Latip, J. Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship-based study. BioMed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Zheleva-Dimitrova, D.; Nedialkov, P.; Kitanov, G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacogn. Mag. 2010, 6, 74–78. [Google Scholar] [CrossRef]
- Johnson, M.H.; Lucius, A.; Meyer, T.; Gonzalez de, M.E. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum). J. Agric. Food Chem. 2011, 59, 8923–8930. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. A review on structure–activity relationship of dietary polyphenols inhibiting α-amylase. Crit. Rev. Food Sci. 2013, 53, 497–506. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Extract | TPC (µg GAE/mg dw) | TFC (µg QUE/mg dw) |
---|---|---|
Methanol Extract | 42.5 ± 8.59 e | 28.94 ± 2.93 e |
Chloroform Extract | 28.3 ± 1.38 d | 12.73 ± 1.93 d |
Petroleum Ether Extract | 2.6 ± 0.95 b | 0.84 ± 0.24 b |
F1 | 10.71 ± 1.43 c | 6.88 ± 1.20 c |
F2 | 8.16 ± 3.18 c | 5.12 ± 1.93 c |
F3 | 2.04 ± 3.91 b | 0.51 ± 0.99 b |
F4 | 0.79 ± 1.23 a | −468 ± 21.55 a |
Sample | IC50 (µg/mL) | |||
---|---|---|---|---|
DPPH Assay | ABTS Assay | α-Amylase | α-Glucosidase | |
Methanol extract | 42.67 ± 4.10 C | 37.39 ± 0.05 C | 98.15 ± 6.04 C | 20.63 ± 0.44 A |
Chloroform extract | 472.83 ± 11.20 F | 90.84 ± 3.12 D | 405.29 ± 7.36 F | 74.96 ± 24.77 C |
Petroleum Ether extract | 1050.08 ± 23.21 G | 625.16 ± 10.58 F | -47.60 ± 9.25 G | 172.93 ±1.77 F |
F1 | 37.09 ± 0.88 C | 19.92 ± 1.11 A | 312.14 ± 8.78 E | 24.17 ± 1.24 B |
F2 | 30.18 ± 1.91 B | 30.50 ± 0.21 B | 13.19 ± 0.18 B | 28.15 ± 2.25 B |
F3 | 78.52 ± 5.21 D | 29.45 ± 4.12 B | 215.86± 16.62 D | 123.18 ± 2.05 D |
F4 | 326.63 ± 13.93 E | 303.75 ± 12.29 E | −67.45 ± 8.74 H | 143.76 ±21.43 E |
Qc | 29.82 ± 3.73 A | - | - | 4.85 ± 1.05 |
Ac | 24.67 ± 0.45 A | 16.74± 1.76 A | - | - |
Acarbose | - | - | 0.85 ± 0.19 | - |
Tx | - | 15.23 ± 2.15 A |
Sample | IC50 (µmol/L) | |||
---|---|---|---|---|
DPPH Assay | ABTS Assay | α-Amylase | α-Glucosidase | |
FEQ-2 | 5.0 × 10−2 | 1.0 × 10−2 | ND | 5.3 × 10−1 |
FEQ-3 | 3.9 × 10−2 | 7.0 × 10−3 | 3.3 × 10−1 | 7.7 × 10−2 |
FEQ-4 | 1.9 × 10−1 | 1.0 × 10−1 | 1.4 × 100 | 2.2 × 10−1 |
FEQ-5 | 3.6 × 10−2 | 7.5 × 10−3 | 5.1 × 10−1 | 3.8 × 10−2 |
FEQ-7 | 4.3 × 10−2 | 6.4 × 10−3 | ND | 3.5 × 10−1 |
FEQ-8 | 4.0 × 10−2 | 3.9 ×10−3 | ND | 3.4 × 10−1 |
Qc | 9.9 × 10−2 | − | − | 1.6 × 10−2 |
Ac | 1.4 × 10−1 | 9.5 × 10−2 | − | − |
Acarbose | − | − | 1.3 × 10−3 | − |
Tx | − | 6.1 × 10−2 |
Position | δH (ppm), m J (Hz) | δC (ppm) Type |
---|---|---|
1 | - | 127.06, C |
2 | 7.10 1H, dd (6.8, 1.4) | 109.32, CH |
3 | 6.95 d, (6.8) | 146.78, CH |
4 | - | 147.92, C |
5 | - | 114.72, C |
6 | 7.06 1H, d (1.5) | 123.04, CH |
7 | 7.60 1H, d (15.9) | 144.65, CH |
8 | 6.33 1H d (15.9) | 115.67, CH |
1′ | 4.20 2H, t (6.8) | 64.64, OCH2 |
2′ | 1.63–1.73, 2H, m | 31.93, CH2 |
3′ | 1.63–1.73, 2H, m | 28.87, CH2 |
4′ | 1.35–1.43, 2H, m | 29.71, CH2 |
5′ | 1.35–1.43, 2H, m | 26.06, CH2 |
6′ | 0.90 3H, t (7.14) | 14.11, CH3 |
OCH3 | 3.95 3H, s | 55.93, OCH3 |
C=O | - | 167.42 |
O-H | 5.96 1H, s | - |
Compound | MP (°C) | UV (λmax MeOH) | FT-IR (cm−1) | MF | Compound’s Name |
---|---|---|---|---|---|
FEQ-3 | 278–280 | 214, 281 | 3291, 2924, 1257, 1613 | C15H10O6 | Kaempferol |
FEQ-4 | 170–172 | 225, 256 | 3260, 2938, 1606, 1250 | C18H17O7 | Pachypodol |
FEQ-7 | 174–178 | 236, 280 | 3325, 2832, 1647, 1448 | C15H15O6 | (+)-Catechin |
FEQ-8 | 241–244 | 280, 238 | 3325, 2883, 1633, 1448 | C15H15O6 | (−)-Epicatechin |
Position | FEQ-3 | FEQ-4 | FEQ-7 | FEQ-8 | ||||
---|---|---|---|---|---|---|---|---|
δH, m J (Hz) | δC | δH, m J (Hz) | δC | δH, m J (Hz) | δC | δH, m, J (Hz) | δC | |
2 | - | 146.7 | - | 156.5 | 4.49 (d) (J = 7.5) | 81.5 | 4.71 (m) | 78.5 |
3 | - | 135.7 | 3.81 (s) | 138.7 | 3.84 (dd) (J = 13.2, 7.6) | 66.8 | 3.82 (m) | 65.4 |
4 | - | 176.6 | - | 178.8 | 2.38(m) 2.68 (dd) (J = 6.0, 5.3) | 28.3 | 2.49 (dd) (J = 16.4, 4.4), 2.66 (m) | 28.7 |
5 | - | 161.1 | - | 161.3 | - | 156.6 | - | 157.0 |
6 | 6.21 (d) (J = 2.0) | 97.9 | 6.33 (d) (J = 2.2) | 97.7 | 5.90 (d) (J = 2.0) | 95.6 | 5.90 (d) (J = 1.9) | 95.6 |
7 | - | 164.3 | 3.89 (s) | 165.8 | - | 156.9 | - | 156.7 |
8 | 6.42 (d) (J = 2.04) | 93.1 | 6.55 (d) (J = 2.2) | 91.9 | 5.70 (d) (J = 2.1) | 94.3 | 5.73 (d) (J = 1.9) | 94.6 |
9 | - | 156.9 | -- | 156.9 | - | 155.8 | - | 156.2 |
10 | - | 103.1 | - | 105.9 | - | 99.5 | - | 99.0 |
1′ | - | 122.4 | - | 122.7 | - | 131.1 | - | 131.1 |
2′ | 8.12 (dd) (J = 2.0, 7.0) | 129.3 | 7.65 (m) | 110.9 | 6.70 (d) (J = 2.0) | 115.0 | 6.69 (m) | 115.4 |
3′ | 6.94 (dd) (J= 2.0, 9.0) | 115.0 | 3.97 (s) | 146.1 | - | 145.3 | 144.9 | |
4′ | - | 159.2 | 150.3 | - | 145.3 | - | 145.0 | |
5′ | 6.94 (dd) (J= 2.0, 9.0) | 115.0 | 7.03 (d) (J = 8.4) | 114.9 | 6.73 (d) (J = 1.8) | 115.5 | 6.90 (s) | 115.2 |
6′ | 8.12 (dd) (J = 2.0, 7.0) | 129.3 | 7.65 (m) | 120.9 | 6.60 (dd) (J = 8.1, 1.9) | 118.9 | 6.69 (m) | 118.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roheem, F.O.; Mat Soad, S.Z.; Ahmed, Q.U.; Ali Shah, S.A.; Latip, J.; Zakaria, Z.A. Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Entada spiralis Stem Bark and Isolation of the Active Constituents. Molecules 2019, 24, 1006. https://doi.org/10.3390/molecules24061006
Roheem FO, Mat Soad SZ, Ahmed QU, Ali Shah SA, Latip J, Zakaria ZA. Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Entada spiralis Stem Bark and Isolation of the Active Constituents. Molecules. 2019; 24(6):1006. https://doi.org/10.3390/molecules24061006
Chicago/Turabian StyleRoheem, Fatimah Opeyemi, Siti Zaiton Mat Soad, Qamar Uddin Ahmed, Syed Adnan Ali Shah, Jalifah Latip, and Zainul Amiruddin Zakaria. 2019. "Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Entada spiralis Stem Bark and Isolation of the Active Constituents" Molecules 24, no. 6: 1006. https://doi.org/10.3390/molecules24061006
APA StyleRoheem, F. O., Mat Soad, S. Z., Ahmed, Q. U., Ali Shah, S. A., Latip, J., & Zakaria, Z. A. (2019). Evaluation of the Enzyme Inhibitory and Antioxidant Activities of Entada spiralis Stem Bark and Isolation of the Active Constituents. Molecules, 24(6), 1006. https://doi.org/10.3390/molecules24061006