Enantiomeric Recognition and Separation by Chiral Nanoparticles
Abstract
:1. Introduction
2. Enantiomeric Recognition by Chiral Nanoparticles
2.1. Gold-Based Nanomaterials
2.2. Silver-Based Nanomaterials
3. Enantiomeric Separation by Chiral Nanoparticles
3.1. Metal Nanoparticles
3.2. Metal Oxide Nanoparticles
3.3. Carbon-Based Nanomaterials
3.3.1. Carbon Nanotubes
3.3.2. Graphene and Graphene Oxide Nanomaterials
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lough, W.J.; Wainer, I.W. Chirality in Natural and Applied Science, 1st ed.; Blackwell Science: Hoboken, NJ, USA, 2002. [Google Scholar]
- Barron, L.D. Chirality and Life. Space. Sci. Rev. 2008, 135, 187–201. [Google Scholar] [CrossRef]
- Sekhon, B.S. Enantioseparation of chiral drugs—An overview. Int. J. PharmTech. Res. 2010, 2, 1584–1594. [Google Scholar]
- Nguyen, L.A.; He, H.; Pham-Huy, C. Chiral drugs: An overview. Int. J. Biomed. Sci. 2006, 2, 85. [Google Scholar] [PubMed]
- Rukhlenko, I.D.; Tepliakov, N.V.; Baimuratov, A.S.; Andronaki, S.A.; Gun’ko, Y.K.; Baranov, A.V.; Fedorov, A.V. Completely chiral optical force for enantioseparation. Sci. Rep. 2016, 6, 36884. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, M. Enantioselective activity and toxicity of chiral herbicides. In Herbicides-Mechanisms and Mode of Action; IntechOpen: London, UK, 2011; pp. 63–80. [Google Scholar]
- Tombo, G.M.R.; Belluš, D. Chirality and crop protection. Angew. Chem. 1991, 30, 1193–1215. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Q.; Cong, L.; Yin, W.; Wang, M. Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere 2014, 95, 241–246. [Google Scholar] [CrossRef]
- Maier, N.M.; Franco, P.; Lindner, W. Separation of enantiomers: Needs, challenges, perspectives. J. Chromatogr. A 2001, 906, 3–33. [Google Scholar] [CrossRef]
- Ye, J.; Zhao, M.; Niu, L.; Liu, W. Enantioselective environmental toxicology of chiral pesticides. Chem. Res. Toxicol. 2015, 28, 325–338. [Google Scholar] [CrossRef]
- Ganapathy, S. Chiral Separation Techniques: A Practical Approach; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Schuur, B.; Verkuijl, B.J.; Minnaard, A.J.; de Vries, J.G.; Heeres, H.J.; Feringa, B.L. Chiral separation by enantioselective liquid-liquid extraction. Org. Biomol. Chem. 2011, 9, 36–51. [Google Scholar] [CrossRef]
- Lorenz, H.; Seidel-Morgenstern, A. Processes to separate enantiomers. Angew. Chem. Int. Ed. Engl. 2014, 53, 1218–1250. [Google Scholar] [CrossRef]
- Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm. 2013, 4, 17–31. [Google Scholar] [CrossRef]
- Das, P.; Srivastav, A.K. Phytochemical extraction and characterization of the leaves of Andrographispaniculata for its anti-bacterial, anti-oxidant, anti-pyretic and anti-diabetic activity. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 3, 15176–15184. [Google Scholar] [CrossRef]
- Cascaval, D.; Oniscu, C.; Galaction, A.I. Selective separation of amino acids by reactive extraction. Biochem. Eng. J. 2001, 7, 171–176. [Google Scholar] [CrossRef]
- Shin, J.S.; Kim, B.G. Asymmetric synthesis of chiral amines with ω-transaminase. Biotechnol. Bioeng. 1999, 65, 206–211. [Google Scholar] [CrossRef]
- Noyori, R. Asymmetric catalysis: Science and opportunities (Nobel lecture). Angew. Chem. Int. Ed. Engl. 2002, 41, 2008–2022. [Google Scholar] [CrossRef]
- Paik, P.; Gedanken, A.; Mastai, Y. Enantioselective separation using chiral mesoporous spherical silica prepared by templating of chiral block copolymers. ACS Appl. Mater. Interfaces 2009, 1, 1834–1842. [Google Scholar] [CrossRef]
- Francotte, E.R. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J. Chromatogr. A 2001, 906, 379–397. [Google Scholar] [CrossRef]
- Berthod, A. Chiral recognition mechanisms in enantiomers separations: A general view. In Chiral Recognition in Separation Methods, 1st ed.; Springer: Berlin, Germany, 2010; pp. 1–32. [Google Scholar]
- Dalgliesh, C.E. 756. The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc. (Resumed) 1952, 137, 3940–3942. [Google Scholar] [CrossRef]
- Mane, S. Racemic drug resolution: A comprehensive guide. Anal. Methods 2016, 8, 7567–7586. [Google Scholar] [CrossRef]
- Chang, C.; Wang, X.; Bai, Y.; Liu, H. Applications of nanomaterials in enantioseparation and related techniques. Trends. Analyt. Chem. 2012, 39, 195–206. [Google Scholar] [CrossRef]
- Izake, E.L. Chiral discrimination and enantioselective analysis of drugs: An overview. J. Pharm. Sci. 2007, 96, 1659–1676. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J. Chromatogr. A 2012, 1269, 26–51. [Google Scholar] [CrossRef]
- Ali, I.; Aboul-Enein, H.Y. Chiral Separations by Liquid Chromatography and Related Technologies, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Scriba, G.K.E. Chiral Separations: Methods and Protocols, 2nd ed.; Humana Press: New York, NY, USA, 2016. [Google Scholar]
- Gübitz, G.; Schmid, M.G. Chiral separation by chromatographic and electromigration techniques. A Review. Biopharm. Drug. Dispos. 2001, 22, 291–336. [Google Scholar] [CrossRef] [Green Version]
- Ward, T.J.; Ward, K.D. Chiral Separations: A Review of Current Topics and Trends. Anal. Chem. 2012, 84, 626–635. [Google Scholar] [CrossRef]
- Stalcup, A.M. Chiral Separations. Annu. Rev. Anal. Chem. 2010, 3, 341–363. [Google Scholar] [CrossRef] [PubMed]
- Drašar, P.; Moravcova, J. Recent advances in analysis of Chinese medical plants and traditional medicines. J. Chromatogr. B 2004, 812, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Kawashima, M.; Hatada, K. Chromatographic resolution: XI. Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J. Chromatogr. A 1986, 363, 173–186. [Google Scholar] [CrossRef]
- Ikai, T.; Yamamoto, C.; Kamigaito, M.; Okamoto, Y. Immobilized Polysaccharide-Based Chiral Stationary Phases for HPLC. Polym. J. 2006, 38, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Francotte, E.R. Enantioselective Chromatography: An Essential and Versatile Tool for the Analytical and Preparative Separation of Enantiomers. CHIMIA 1997, 51, 717–725. [Google Scholar]
- Francotte, E.R. Polysaccharide Derivatives as Unique Chiral Selectors for Enantioselective Chromatography. CHIMIA 2017, 71, 430–450. [Google Scholar] [CrossRef]
- Gübitz, G.; Schmid, M.G. Recent advances in chiral separation principles in capillary electrophoresis and capillary electrochromatography. Electrophoresis 2004, 25, 3981–3996. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, A. Crystallization-based separation of enantiomers. In Stereoselective Synthesis of Drugs and Natural Products, 1st ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 1–20. [Google Scholar]
- Lorenz, H.; Polenske, D.; Seidel-Morgenstern, A. Application of preferential crystallization to resolve racemic compounds in a hybrid process. Chirality 2006, 18, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Holbach, A.; Godde, J.; Mahendrarajah, R.; Kockmann, N. Enantioseparation of chiral aromatic acids in process intensified liquid–liquid extraction columns. AIChE J. 2015, 61, 266–276. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Xu, J.; Luo, G.; Dai, Y. Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen. J. Memb. Sci. 2007, 293, 133–141. [Google Scholar] [CrossRef]
- Flores-López, L.Z.; Caloca, J.; Rogel-Hernández, E.; Espinoza-Gomez, H. Development of an enantioselective membrane from cellulose acetate propionate/cellulose acetate, for the separation of trans-stilbene oxide. Cellulose 2014, 21, 1987–1995. [Google Scholar] [CrossRef]
- Higuchi, A.; Higuchi, Y.; Furuta, K.; Yoon, B.O.; Hara, M.; Maniwa, S.; Saitoh, M.; Sanui, K. Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes. J. Memb. Sci. 2003, 221, 207–218. [Google Scholar] [CrossRef]
- Han, J.; Kitagawa, O.; Wzorek, A.; Klika, K.D.; Soloshonok, V.A. The self-disproportionation of enantiomers (SDE): A menace or an opportunity? Chem. Sci. 2018, 9, 1718–1739. [Google Scholar] [CrossRef]
- Jianlin, H.; Donna, J.N.; Alexander, E.S.; Vadim, A.S. Self-Disproportionation of Enantiomers via Sublimation; New and Truly Green Dimension in Optical Purification. Curr. Org. Synth. 2011, 8, 310–317. [Google Scholar]
- Soloshonok, V.A.; Roussel, C.; Kitagawa, O.; Sorochinsky, A.E. Self-disproportionation of enantiomers via achiral chromatography: A warning and an extra dimension in optical purifications. Chem. Soc. Rev. 2012, 41, 4180–4188. [Google Scholar] [CrossRef]
- Sorochinsky, A.E.; Aceña, J.L.; Soloshonok, V.A. Self-Disproportionation of Enantiomers of Chiral, Non-Racemic Fluoroorganic Compounds: Role of Fluorine as Enabling Element. Synthesis 2013, 45, 141–152. [Google Scholar] [CrossRef]
- Han, J.; Wzorek, A.; Soloshonok, V.A.; Klika, K.D. The self-disproportionation of enantiomers (SDE): The effect of scaling down, potential problems versus prospective applications, possible new occurrences, and unrealized opportunities? Electrophoresis 2019. [Google Scholar] [CrossRef]
- Armstrong, D.W.; Chang, C.D.; Li, W.Y. Relevance of enantiomeric separations in food and beverage analyses. J. Agric. Food. Chem. 1990, 38, 1674–1677. [Google Scholar] [CrossRef]
- Xie, R.; Chu, L.Y.; Deng, J.G. Membranes and membrane processes for chiral resolution. Chem. Soc. Rev. 2008, 37, 1243–1263. [Google Scholar] [CrossRef]
- Gawley, R.E.; Aubé, J. Preface. In Principles of Asymmetric Synthesis, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Zhang, M.; Ye, B.-C. Colorimetric Chiral Recognition of Enantiomers Using the Nucleotide-Capped Silver Nanoparticles. Anal. Chem. 2011, 83, 1504–1509. [Google Scholar] [CrossRef]
- Su, H.; Zheng, Q.; Li, H. Colorimetric detection and separation of chiral tyrosine based on N-acetyl-l-cysteine modified gold nanoparticles. J. Mater. Chem. 2012, 22, 6546–6548. [Google Scholar] [CrossRef]
- Kang, Y.J.; Oh, J.W.; Kim, Y.R.; Kim, J.S.; Kim, H. Chiral gold nanoparticle-based electrochemical sensor for enantioselective recognition of 3,4-dihydroxyphenylalanine. Chem. Commun. 2010, 46, 5665–5667. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Li, H. Chiral colorimetric recognition of amino acids based on silver nanoparticle clusters. New J. Chem. 2012, 36, 1442. [Google Scholar] [CrossRef]
- Song, G.; Zhou, F.; Xu, C.; Li, B. A universal strategy for visual chiral recognition of alpha-amino acids with l-tartaric acid-capped gold nanoparticles as colorimetric probes. Analyst 2016, 141, 1257–1265. [Google Scholar] [CrossRef]
- Zhou, J.; Duan, J.; Zhang, X.E.; Wang, Q.; Men, D. A chiral responsive carbon dots-gold nanoparticle complex mediated by hydrogen peroxide independent of surface modification with chiral ligands. Nanoscale 2018, 10, 18606–18612. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Xu, C.; Jin, Y.; Li, B. Gold Nanorods as Visual Sensing Platform for Chiral Recognition with Naked Eyes. Sci. Rep. 2018, 8, 5296. [Google Scholar] [CrossRef] [Green Version]
- Gautier, C.; Bürgi, T. Chiral N-Isobutyryl-cysteine Protected Gold Nanoparticles: Preparation, Size Selection, and Optical Activity in the UV−vis and Infrared. J. Am. Chem. Soc. 2006, 128, 11079–11087. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y.-T.; Li, Y.-X.; Yu, L.-S. Application of Chiral Ionic Liquid-Modified Gold Nanoparticles in the Chiral Recognition of Amino Acid Enantiomers. Appl. Spectrosc. 2016, 70, 1649–1654. [Google Scholar] [CrossRef]
- Jafari, M.; Tashkhourian, J.; Absalan, G. Chiral recognition of tryptophan enantiomers using chitosan-capped silver nanoparticles: Scanometry and spectrophotometry approaches. Talanta 2018, 178, 870–878. [Google Scholar] [CrossRef]
- Tashkhourian, J.; Afsharinejad, M. A novel colorimetric sensor for sensitive determination of R-citalopram based on the plasmonic properties of silver nanoparticles. New J. Chem. 2017, 41, 13881–13888. [Google Scholar] [CrossRef]
- Shahrajabian, M.; Ghasemi, F.; Hormozi-Nezhad, M.R. Nanoparticle-based Chemiluminescence for Chiral Discrimination of Thiol-Containing Amino Acids. Sci. Rep. 2018, 8, 14011. [Google Scholar] [CrossRef]
- Carrillo-Carrión, C.; Cárdenas, S.; Simonet, B.M.; Valcárcel, M. Selective Quantification of Carnitine Enantiomers Using Chiral Cysteine-Capped CdSe(ZnS) Quantum Dots. Anal. Chem. 2009, 81, 4730–4733. [Google Scholar] [CrossRef]
- Han, C.; Li, H. Chiral Recognition of Amino Acids Based on Cyclodextrin-Capped Quantum Dots. Small 2008, 4, 1344–1350. [Google Scholar] [CrossRef]
- Wang, Y.; Su, P.; Wang, S.; Wu, J.; Huang, J.; Yang, Y. Dendrimer modified magnetic nanoparticles for immobilized BSA: A novel chiral magnetic nano-selector for direct separation of racemates. J. Mater. Chem. B 2013, 1, 5028–5035. [Google Scholar] [CrossRef]
- Wu, J.; Su, P.; Huang, J.; Wang, S.; Yang, Y. Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds. J. Colloid Interface Sci. 2013, 399, 107–114. [Google Scholar] [CrossRef]
- Visheratina, A.K.; Purcell-Milton, F.; Serrano-García, R.; Kuznetsova, V.A.; Orlova, A.O.; Fedorov, A.V.; Baranov, A.V.; Gun’ko, Y.K. Chiral recognition of optically active CoFe2O4 magnetic nanoparticles by CdSe/CdS quantum dots stabilised with chiral ligands. J. Mater. Chem. C 2017, 5, 1692–1698. [Google Scholar] [CrossRef]
- Huang, R.; Wang, D.; Liu, S.; Guo, L.; Wang, F.; Lin, Z.; Qiu, B.; Chen, G. Preparative separation of enantiomers based on functional nucleic acids modified gold nanoparticles. Chirality 2013, 25, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Oila, M.J.; Koskinen, A.M.P. Chirally modified gold nanoparticles: Nanostructured chiral ligands for catalysis. ARKIVOC 2006, xv, 76–83. [Google Scholar]
- Roy, S.; Pericas, M.A. Functionalized nanoparticles as catalysts for enantioselective processes. Org. Biomol. Chem. 2009, 7, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Farrag, M.; Tschurl, M.; Heiz, U. Chiral Gold and Silver Nanoclusters: Preparation, Size Selection, and Chiroptical Properties. Chem. Mater. 2013, 25, 862–870. [Google Scholar] [CrossRef]
- Keshvari, F.; Bahram, M.; Farshid, A.A. Gold nanoparticles biofunctionalized (grafted) with chiral amino acids: A practical approach to determining the enantiomeric percentage of racemic mixtures. Anal. Methods 2015, 7, 4560–4567. [Google Scholar] [CrossRef]
- Preiss, L.C.; Wagner, M.; Mastai, Y.; Landfester, K.; Munoz-Espi, R. Amino-Acid-Based Polymerizable Surfactants for the Synthesis of Chiral Nanoparticles. Macromol. Rapid Commun. 2016, 37, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Badwaik, V.; Kherde, Y.; Waghwani, H.K.; Modi, T.; Aguilar, Z.P.; Rodgers, H.; Hamilton, W.; Marutharaj, T.; Webb, C.; et al. Gold nanoparticles: Various methods of synthesis and antibacterial applications. Front Biosci. 2014, 19, 1320–1344. [Google Scholar] [CrossRef]
- Shah, M.; Badwaik, V.D.; Dakshinamurthy, R. Biological applications of gold nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 344–362. [Google Scholar] [CrossRef] [PubMed]
- Schulz, F.; Tober, S.; Lange, H. Size-Dependent Phase Transfer Functionalization of Gold Nanoparticles To Promote Well-Ordered Self-Assembly. Langmuir 2017, 33, 14437–14444. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Geldbach, T.J.; Zhao, D.; Dyson, P.J. From Dysfunction to Bis-function: On the Design and Applications of Functionalised Ionic Liquids. Chem. Eur. J. 2006, 12, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Liviano, S.; Nuñez, N.O.; Rivera-Fernández, S.; de la Fuente, J.M.; Ocaña, M. Ionic Liquid Mediated Synthesis and Surface Modification of Multifunctional Mesoporous Eu:GdF3 Nanoparticles for Biomedical Applications. Langmuir 2013, 29, 3411–3418. [Google Scholar] [CrossRef]
- Brückner, H.; Schieber, A. Determination of amino acid enantiomers in human urine and blood serum by gas chromatography–mass spectrometry. Biomed. Chromatogr. 2001, 15, 166–172. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.Á.; Varela-Martínez, D.A.; Socas-Rodríguez, B.; Hernández-Borges, J. Recent applications of nanomaterials in capillary electrophoresis. Electrophoresis 2017, 38, 2431–2446. [Google Scholar] [CrossRef] [PubMed]
- Wallingford, R.A.; Ewing, A.G. Capillary Electrophoresis. Adv. Chromatogr. 1989, 29, 1–76. [Google Scholar] [PubMed]
- Duan, L.P.; Ding, G.S.; Tang, A.N. Preparation of chitosan-modified silica nanoparticles and their applications in the separation of auxins by capillary electrophoresis. J. Sep. Sci. 2015, 38, 3976–3982. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Nilsson, S. Nanoparticle-based pseudostationary phases in capillary electrochromatography. Electrophoresis 2006, 27, 76–83. [Google Scholar] [CrossRef]
- Deng, X.; Li, W.; Ding, G.; Xue, T.; Chen, X. Synthesis and Applications of Functionalized Magnetic Nanomaterials in Enantioseparation. Sep. Purif. Rev. 2019, 48, 14–29. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, J.; Zhang, X.; Zhao, L.; Li, S. Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles. Microchim. Acta 2018, 185, 227. [Google Scholar] [CrossRef]
- Choi, S.H.; Noh, H.J.; Lee, K.P. Chiral separation of arylalcohols by capillary electrophoresis using sulfonated β-cyclodextrin and Ag colloids as additives. Bull. Korean Chem. Soc. 2005, 26, 1549–1554. [Google Scholar]
- Shukla, N.; Bartel, M.A.; Gellman, A.J. Enantioselective separation on chiral Au nanoparticles. J. Am. Chem. Soc. 2010, 132, 8575–8580. [Google Scholar] [CrossRef]
- Shukla, N.; Yang, D.; Gellman, A.J. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles. Surf. Sci. 2016, 648, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, C.; Liu, X.; Shi, J.; Wang, G.; Zhu, L.; Guo, L.; Glennon, J.D.; Scully, N.M.; Doherty, B.E. Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary electrochromatography. Electrophoresis 2010, 31, 1697–1705. [Google Scholar] [CrossRef]
- Choi, H.J.; Hyun, M.H. Separation of enantiomers with magnetic silica nanoparticles modified by a chiral selector: Enantioselective fishing. Chem. Commun. 2009, 42, 6454–6456. [Google Scholar] [CrossRef]
- Ghosh, S.; Fang, T.H.; Uddin, M.S.; Hidajat, K. Enantioselective separation of chiral aromatic amino acids with surface functionalized magnetic nanoparticles. Coll. Surf. B Biointerfaces 2013, 105, 267–277. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, T.; Chen, B.; Shen, J.; Duan, X.; Zhang, J.; Li, W. Enantioselective resolution of chiral drugs using BSA functionalized magnetic nanoparticles. Sep. Purif. Technol. 2013, 107, 11–18. [Google Scholar] [CrossRef]
- Ge, J.; Zhou, W.; Zhao, L.; Shi, Y.P. Basic Indole Ring Enantiomer Separation on Cellulose Tris (3,5-dimethylphenylcarbamate) Coated TiO2/SiO2 Chiral Stationary Phase. Anal. Lett. 2007, 40, 2515–2523. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; De Beer, T.; Baeyens, W.R.; Fei, G.T.; Dilinuer, M.; Ouyang, J. Simultaneous separation of eight β-adrenergic drugs using titanium dioxide nanoparticles as additive in capillary electrophoresis. Electrophoresis 2008, 29, 2321–2329. [Google Scholar] [CrossRef]
- Kumar, A.P.; Kim, J.H.; Thanh, T.D.; Lee, Y.I. Chiral zirconia magnetic microspheres as a new recyclable selector for the discrimination of racemic drugs. J. Mater. Chem. B 2013, 1, 4909–4915. [Google Scholar] [CrossRef]
- Moliner-Martínez, Y.; Cárdenas, S.; Valcárcel, M. Evaluation of carbon nanostructures as chiral selectors for direct enantiomeric separation of ephedrines by EKC. Electrophoresis 2007, 28, 2573–2579. [Google Scholar] [CrossRef]
- Weng, X.; Bi, H.; Liu, B.; Kong, J. On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel. Electrophoresis 2006, 27, 3129–3135. [Google Scholar] [CrossRef]
- Guillaume, Y.C.; André, C. Fast enantioseparation by hplc on a modified carbon nanotube monolithic stationary phase with a pyrenyl aminoglycoside derivative. Talanta 2013, 115, 418–421. [Google Scholar] [CrossRef]
- Ahmed, M.; Yajadda, M.M.A.; Han, Z.J.; Su, D.; Wang, G.; Ostrikov, K.K.; Ghanem, A. Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A 2014, 1360, 100–109. [Google Scholar] [CrossRef]
- Na, N.; Hu, Y.; Ouyang, J.; Baeyens, W.R.; Delanghe, J.R.; Taes, Y.E.; Xie, M.; Chen, H.; Yang, Y. On the use of dispersed nanoparticles modified with single layer β-cyclodextrin as chiral selecor to enhance enantioseparation of clenbuterol with capillary electrophoresis. Talanta 2006, 69, 866–872. [Google Scholar] [CrossRef]
- Yu, J.; Huang, D.; Huang, K.; Hong, Y. Preparation of Hydroxypropyl-β-cyclodextrin Cross-linked Multi-walled Carbon Nanotubes and Their Application in Enantioseparation of Clenbuterol. Chin. J. Chem. 2011, 29, 893–897. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, Y.; Du, S. Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J. Chromatogr. A 2014, 1339, 185–191. [Google Scholar] [CrossRef]
- Hua, X.; Du, Y.; Chen, J.; Xu, G.; Yu, T.; Zhang, Q. Evaluation of the enantioselectivity of carbon nanoparticles-modified chiral separation systems using dextrin as chiral selector by capillary electrokinetic chromatography. Electrophoresis 2013, 34, 1901–1907. [Google Scholar] [CrossRef]
- Candelaria, L.; Frolova, L.V.; Kowalski, B.M.; Artyushkova, K.; Serov, A.; Kalugin, N.G. Surface-modified three-dimensional graphene nanosheets as a stationary phase for chromatographic separation of chiral drugs. Sci. Rep. 2018, 8, 147. [Google Scholar] [CrossRef]
- Tu, F.Y.; Yu, L.Y.; Yu, J.G.; Chen, X.Q.; Fu, Q.; Jiao, F.P.; Peng, Z.G.; Zhang, T. Graphene as tunable stationary phase additive for enantioseparation. Nano 2013, 8, 1350069. [Google Scholar] [CrossRef]
- Liu, Z.; Du, Y.; Feng, Z. Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim. Acta 2017, 184, 583–593. [Google Scholar] [CrossRef]
- Liang, R.P.; Liu, C.M.; Meng, X.Y.; Wang, J.W.; Qiu, J.D. A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. J. Chromatogr. A 2012, 1266, 95–102. [Google Scholar] [CrossRef]
- Liang, R.P.; Wang, X.N.; Liu, C.M.; Meng, X.Y.; Qiu, J.D. Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation. J. Chromatogr. A 2014, 1323, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Zhu, N.; Gao, Z.; Ma, Y. Cellulose type chiral stationary phase based on reduced graphene oxide@ silica gel for the enantiomer separation of chiral compounds. Chirality 2018, 30, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.R.; Song, X.D.; Zhu, H.Y.; Cheng, C.J.; Yu, H.R.; Zhang, H.H. Novel Smart Polymer-Brush-Modified Magnetic Graphene Oxide for Highly Efficient Chiral Recognition and Enantioseparation of Tryptophan Enantiomers. ACS Appl. Bio. Mater. 2018, 1, 1074–1083. [Google Scholar] [CrossRef]
- Na, N.; Hu, Y.; Ouyang, J.; Baeyens, W.R.; Delanghe, J.R.; De Beer, T. Use of polystyrene nanoparticles to enhance enantiomeric separation of propranolol by capillary electrophoresis with Hp-beta-CD as chiral selector. Anal. Chim. Acta 2004, 527, 139–147. [Google Scholar] [CrossRef]
- Aydoğan, C.; Karakoç, V.; Yılmaz, F.; Shaikh, H.; Denizli, A. Enantioseparation of Ofloxacin by Ligand Exchange Capillary Electrophoresis Using L-Histidine Modified Nanoparticles as Chiral Ligand. Hacet. J. Biol. Chem. 2013, 41, 29–36. [Google Scholar]
- Dong, X.; Wu, R.A.; Dong, J.; Wu, M.; Zhu, Y.; Zou, H. A mesoporous silica nanoparticles immobilized open-tubular capillary column with a coating of cellulose tris (3,5-dimethylphenyl-carbamate) for enantioseparation in CEC. Electrophoresis 2008, 29, 3933–3940. [Google Scholar] [CrossRef]
- Xu, S.; Mo, R.; Jin, C.; Cui, X.; Bai, R.; Ji, Y. Mesoporous silica nanoparticles incorporated hybrid monolithic stationary phase immobilized with pepsin for enantioseparation by capillary electrochromatography. J. Pharm. Biomed. Anal. 2017, 140, 190–198. [Google Scholar] [CrossRef]
- Gong, Z.S.; Duan, L.P.; Tang, A.N. Amino-functionalized silica nanoparticles for improved enantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim. Acta 2015, 182, 1297–1304. [Google Scholar] [CrossRef]
- Li, W.; Ding, G.S.; Tang, A.N. Enantiomer separation of propranolol and tryptophan using bovine serum albumin functionalized silica nanoparticles as adsorbents. RSC Adv. 2015, 5, 93850–93857. [Google Scholar] [CrossRef]
- Padmanaban, M.; Müller, P.; Lieder, C.; Gedrich, K.; Grünker, R.; Bon, V.; Senkovska, I.; Baumgärtner, S.; Opelt, S.; Paasch, S.; et al. Application of a chiral metal–organic framework in enantioselective separation. Chem. Commun. 2011, 47, 12089–12091. [Google Scholar] [CrossRef]
- Xie, S.M.; Zhang, Z.J.; Wang, Z.Y.; Yuan, L.M. Chiral metal–organic frameworks for high-resolution gas chromatographic separations. J. Am. Chem. Soc. 2011, 133, 11892–11895. [Google Scholar] [CrossRef]
- Sattler, K.D. Handbook of Nanophysics: Nanoparticles and Quantum Dots, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Hu, A.; Yee, G.T.; Lin, W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc. 2005, 127, 12486–12487. [Google Scholar] [CrossRef]
- Mei, W.; Wu, Q. Applications of Metal Nanoparticles in Medicine/Metal Nanoparticles as Anticancer Agents. In Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences; Wiley: Hoboken, NJ, USA, 2018; pp. 169–190. [Google Scholar]
- Mody, V.V.; Siwale, R.; Singh, A.; Mody, H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010, 2, 282. [Google Scholar] [CrossRef]
- Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res. 2014, 13, 1169–1177. [Google Scholar] [CrossRef]
- Tang, S.; Guo, Y.; Xiong, C.; Liu, S.; Liu, X.; Jiang, S. Nanoparticle-based monoliths for chromatographic separations. Analyst 2014, 139, 4103–4117. [Google Scholar] [CrossRef]
- Shao, P.; Ji, G.; Chen, P. Gold nanotube membranes: Preparation, characterization and application for enantioseparation. J. Memb. Sci. 2005, 255, 1–11. [Google Scholar] [CrossRef]
- Li, H.F.; Zeng, H.; Chen, Z.; Lin, J.M. Chip-based enantioselective open-tubular capillary electrochromatography using bovine serum albumin-gold nanoparticle conjugates as the stationary phase. Electrophoresis 2009, 30, 1022–1029. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Jiang, F.; Guo, L.; Yang, L. Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase. J. Chromatogr. A 2011, 1218, 3725–3729. [Google Scholar] [CrossRef]
- Fang, L.L.; Wang, P.; Wen, X.L.; Guo, X.; Yu, J.; Guo, X.J. Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography. Talanta 2017, 167, 158–165. [Google Scholar] [CrossRef]
- Luo, X.; Morrin, A.; Killard, A.J.; Smyth, M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319–326. [Google Scholar] [CrossRef]
- Corti, M.; Lascialfari, A.; Micotti, E.; Castellano, A.; Donativi, M.; Quarta, A.; Cozzoli, P.D.; Manna, L.; Pellegrino, T.; Sangregorio, C. Magnetic properties of novel superparamagnetic MRI contrast agents based on colloidal nanocrystals. J. Magn. Magn. Mater. 2008, 320, e320–e323. [Google Scholar] [CrossRef]
- Arslan, M.; Sayin, S.; Yilmaz, M. Enantioselective sorption of some chiral carboxylic acids by various cyclodextrin-grafted iron oxide magnetic nanoparticles. Tetrahedron Asymmetry 2013, 24, 982–989. [Google Scholar] [CrossRef]
- Caruntu, D.; Caruntu, G.; O’Connor, C.J. Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J. Phys. D 2007, 40, 5801. [Google Scholar] [CrossRef]
- Chen, X.; Rao, J.; Wang, J.; Gooding, J.J.; Zou, G.; Zhang, Q. A facile enantioseparation for amino acids enantiomers using β-cyclodextrins functionalized Fe3O4 nanospheres. Chem. Commun. 2011, 47, 10317–10319. [Google Scholar] [CrossRef] [PubMed]
- Sayin, S.; Akoz, E.; Yilmaz, M. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix [8] arene valeric acid complexes. Org. Biomol. Chem. 2014, 12, 6634–6642. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.Y.; Song, X.D.; Yang, X.R.; Cheng, C.J.; Yu, H.R.; Zhang, H.H. Smart chiral magnetic nanoparticles for highly efficient enantioseparation of tryptophan enantiomers. J. Mater. Sci. 2019, 54, 2960–2974. [Google Scholar] [CrossRef]
- Winkler, J.; Marmé, S. Titania as a sorbent in normal-phase liquid chromatography. J. Chromatogr. A 2000, 888, 51–62. [Google Scholar] [CrossRef]
- Yu, J.C.; Qu, F.; Lin, J.; Lam, H.; Chen, Z. Ion chromatographic separation of anions and cations on a titania packed column. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 367–380. [Google Scholar]
- Kumar, A.P.; Park, J.H. Chiral separation of basic compounds on a cellulose 3, 5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography. J. Chromatogr. A 2011, 1218, 6548–6553. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.S.; Park, J.H. Chiral separation of basic compounds on sulfated β-cyclodextrin-coated zirconia monolith by capillary electrochromatography. Bull. Korean Chem. Soc. 2013, 34, 1809–1813. [Google Scholar] [CrossRef]
- Dun, H.; Zhang, W.; Wei, Y.; Xiuqing, S.; Li, Y.; Chen, L. Layer-by-layer self-assembly of multilayer zirconia nanoparticles on silica spheres for HPLC packings. Anal. Chem. 2004, 76, 5016–5023. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Zarei, M.; Ghasemabadi, M. Nanoparticle improved separations: From capillary to slab gel electrophoresis. Trends Anal. Chem. 2017, 86, 56–74. [Google Scholar] [CrossRef]
- Valcárcel, M.; Cárdenas, S.; Simonet, B.M.; Moliner-Martínez, Y.; Lucena, R. Carbon nanostructures as sorbent materials in analytical processes. Trends Anal. Chem. 2008, 27, 34–43. [Google Scholar] [CrossRef]
- Qin, L.C.; Zhao, X.; Hirahara, K.; Miyamoto, Y.; Ando, Y.; Iijima, S. Materials science: The smallest carbon nanotube. Nature 2000, 408, 50. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tang, Z.K.; Li, G.D.; Chen, J.S. Materials science: Single-walled 4 Å carbon nanotube arrays. Nature 2000, 408, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R.O.; Ando, Y. Smallest carbon nanotube is 3 Å in diameter. Phys. Rev. Lett. 2004, 92, 125502. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, Y.; Zhang, Q.; Xie, H.; Qian, W.; Wei, F. Growth of half-meter long carbon nanotubes based on Schulz–Flory distribution. ACS Nano 2013, 6, 6156–6161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Albelda, M.T.; Liu, Y.; Canary, J.W. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry. Chirality 2005, 17, 404–420. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Ying, L.S.; bin Mohd Salleh, M.A.; Mohamed Yusoff, H.B.; Rashid, S.B.A.; Razak, J.B.A. Continuous production of carbon nanotubes—A review. J. Ind. Eng. Chem. 2011, 17, 367–376. [Google Scholar] [CrossRef]
- Herrera-Herrera, A.V.; González-Curbelo, M.Á.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Carbon nanotubes applications in separation science: A review. Anal. Chim. Acta 2012, 734, 1–30. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; De Heer, W.A. Carbon nanotubes--the route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645. [Google Scholar] [CrossRef]
- Harrison, B.S.; Atala, A. Carbon nanotube applications for tissue engineering. Biomaterials 2007, 28, 344–353. [Google Scholar] [CrossRef]
- Song, J.; Wang, F.; Yang, X.; Ning, B.; Harp, M.G.; Culp, S.H.; Hu, S.; Huang, P.; Nie, L.; Chen, J.; et al. Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications. J. Am. Chem. Soc. 2016, 138, 7005–7015. [Google Scholar] [CrossRef]
- Hemasa, A.L.; Naumovski, N.; Maher, W.A.; Ghanem, A. Application of carbon nanotubes in chiral and achiral separations of pharmaceuticals, biologics and chemicals. Nanomaterials 2017, 7, 186. [Google Scholar] [CrossRef]
- Power, T.D.; Skoulidas, A.I.; Sholl, D.S. Can chiral single walled carbon nanotubes be used as enantiospecific adsorbents? J. Am. Chem. Soc. 2002, 124, 1858–1859. [Google Scholar] [CrossRef]
- Suárez, B.; Simonet, B.M.; Cárdenas, S.; Valcárcel, M. Surfactant-coated single-walled carbon nanotubes as a novel pseudostationary phase in capillary EKC. Electrophoresis 2007, 28, 1714–1722. [Google Scholar] [CrossRef]
- Zhao, L.; Ai, P.; Duan, A.-H.; Yuan, L.-M. Single-walled carbon nanotubes for improved enantioseparations on a chiral ionic liquid stationary phase in GC. Anal. Bioanal. Chem. 2011, 399, 143–147. [Google Scholar] [CrossRef]
- Tarigh, G.D.; Shemirani, F. In situ immobilization of a general resolving agent on the magnetic multi-wall carbon nanotube for the direct enantioenrichment of dl-mandelic acid. Talanta 2015, 144, 899–907. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Wang, J.; Li, J.; Lin, Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212. [Google Scholar] [CrossRef]
- Liang, X.; Hou, X.; Chan, J.H.; Guo, Y.; Hilder, E.F. The application of graphene-based materials as chromatographic stationary phases. Trends Anal. Chem. 2018, 98, 149–160. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef]
- Dai, J.F.; Wang, G.J.; Ma, L.; Wu, C.K. Surface properties of graphene: Relationship to graphene-polymer composites. Rev. Adv. Mater. Sci. 2015, 40, 60–71. [Google Scholar]
- The 2010 Nobel Prize in Physics—Press Release. Available online: https://www.nobelprize.org/uploads/2018/06/press-9.pdf (accessed on 17 January 2019).
- Ray, S.C. Application and uses of graphene oxide and reduced graphene oxide. In Applications of Graphene and Graphene-Oxide Based Nanomaterials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 39–55. [Google Scholar]
- Li, W.; Liang, J.; Yang, W.; Deng, J. Chiral functionalization of graphene oxide by optically active helical-substituted polyacetylene chains and its application in enantioselective crystallization. ACS Appl. Mater. Interfaces 2014, 6, 9790–9798. [Google Scholar] [CrossRef]
- Hauser, A.W.; Mardirossian, N.; Panetier, J.A.; Head-Gordon, M.; Bell, A.T.; Schwerdtfeger, P. Functionalized graphene as a gatekeeper for chiral molecules: An alternative concept for chiral separation. Angew. Chem. Int. Ed. 2014, 53, 9957–9960. [Google Scholar] [CrossRef]
- Liang, R.P.; Meng, X.Y.; Liu, C.M.; Wang, J.W.; Qiu, J.D. Enantiomeric separation by open-tubular capillary electrochromatography using bovine-serum-albumin-conjugated graphene oxide–magnetic nanocomposites as stationary phase. Microfluid. Nanofluid. 2014, 16, 195–206. [Google Scholar] [CrossRef]
- Ye, N.; Li, J.; Xie, Y.; Liu, C. Graphene oxide coated capillary for chiral separation by CE. Electrophoresis 2013, 34, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Chen, X.; Xu, Y.; Cui, X.; Bai, R.; Jin, C.; Li, R.; Ji, Y. Preparation of graphene oxide-modified affinity capillary monoliths based on three types of amino donor for chiral separation and proteolysis. J. Chromatogr. A 2016, 1456, 249–256. [Google Scholar] [CrossRef] [PubMed]
- De los Santos, Z.A.; Ding, R.; Wolf, C. Quantitative chirality sensing of amines and amino alcohols via Schiff base formation with a stereodynamic UV/CD probe. Org. Biomol. Chem. 2016, 14, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Wolf, C. Enantioselective Sensing of Chiral Carboxylic Acids. J. Am. Chem. Soc. 2004, 126, 14736–14737. [Google Scholar] [CrossRef] [PubMed]
- Manoli, K.; Magliulo, M.; Torsi, L. Chiral Sensor Devices for Differentiation of Enantiomers. In Differentiation of Enantiomers II, 1st ed.; Springer: Berlin, Germany, 2013; pp. 133–176. [Google Scholar]
- De los Santos, Z.A.; Yusin, G.; Wolf, C. Enantioselective sensing of carboxylic acids with a bis(urea)oligo(phenylene)ethynylene foldamer. Tetrahedron 2019, 75, 1504–1509. [Google Scholar] [CrossRef]
- Tsourkas, A.; Hofstetter, O.; Hofstetter, H.; Weissleder, R.; Josephson, L. Magnetic Relaxation Switch Immunosensors Detect Enantiomeric Impurities. Angew. Chem. 2004, 43, 2395–2399. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, I.; Shemer, G.; Fried, T.; Kosower, E.M.; Markovich, G. Plasmon-Resonance-Enhanced Absorption and Circular Dichroism. Angew. Chem. 2008, 47, 4855–4857. [Google Scholar] [CrossRef]
- Dutta, P.; Tipple, C.A.; Lavrik, N.; Datskos, P.G.; Hofstetter, H.; Hofstetter, O.; Sepaniak, M.J. Enantioselective Sensors Based on Antibody-Mediated Nanomechanics. Anal. Chem. 2003, 75, 2342–2348. [Google Scholar] [CrossRef]
- Prasad, B.B.; Madhuri, R.; Tiwari, M.P.; Sharma, P.S. Enantioselective recognition of d- and l-tryptophan by imprinted polymer-carbon composite fiber sensor. Talanta 2010, 81, 187–196. [Google Scholar] [CrossRef]
- Huang, J.; Wei, Z.; Chen, J. Molecular imprinted polypyrrole nanowires for chiral amino acid recognition. Sens. Actuat. B Chem. 2008, 134, 573–578. [Google Scholar] [CrossRef]
- Ariga, K.; Richards, G.J.; Ishihara, S.; Izawa, H.; Hill, J.P. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts. Sensors 2010, 10, 6796–6820. [Google Scholar] [CrossRef] [Green Version]
- Vashist, S.K.; Vashist, P. Recent Advances in Quartz Crystal Microbalance-Based Sensors. J. Sens. 2011, 2011, 571405. [Google Scholar] [CrossRef]
- Gou, H.; He, J.; Mo, Z.; Wei, X.; Hu, R.; Wang, Y.; Guo, R. A Highly Effective Electrochemical Chiral Sensor of Tryptophan Enantiomers Based on Covalently Functionalize Reduced Graphene Oxide with L-Lysine. J. Electrochem. Soc. 2016, 163, B272–B279. [Google Scholar] [CrossRef]
- Basozabal, I.; Gómez-Caballero, A.; Unceta, N.; Aranzazu Goicolea, M.; Barrio, R.J. Voltammetric sensors with chiral recognition capability: The use of a chiral inducing agent in polyaniline electrochemical synthesis for the specific recognition of the enantiomers of the pesticide dinoseb. Electrochim. Acta 2011, 58, 729–735. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Bi, R.; Xu, L.; Liu, Y. A potentiometric chiral sensor for l-Phenylalanine based on crosslinked polymethylacrylic acid–polycarbazole hybrid molecularly imprinted polymer. Anal. Chim. Acta 2012, 754, 83–90. [Google Scholar] [CrossRef]
- Lahav, M.; Kharitonov, A.B.; Willner, I. Imprinting of Chiral Molecular Recognition Sites in Thin TiO2 Films Associated with Field-Effect Transistors: Novel Functionalized Devices for Chiroselective and Chirospecific Analyses. Chem. Eur. J. 2001, 7, 3992–3997. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, J.; Han, Q.; Wang, Y.; Fu, Y. A new chiral electrochemical sensor for the enantioselective recognition of penicillamine enantiomers. J. Solid State Electrochem. 2012, 16, 2481–2485. [Google Scholar] [CrossRef]
- Bayraktar, E.; Eroglu, D.; Ciftlik, A.T.; Kulah, H. A MEMS based gravimetric resonator for mass sensing applications. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 817–820. [Google Scholar]
- Stefan, R.-I.; van Staden, J.F.; Aboul-Enein, H.Y. Amperometric biosensors/sequential injection analysis system for simultaneous determination of S- and R-captopril. Biosens. Bioelectron. 2000, 15, 1–5. [Google Scholar] [CrossRef]
- Ng, S.-C.; Sun, T.; Chan, H.S.O. Durable chiral sensor based on quartz crystal microbalance using self-assembled monolayer of permethylated β-cyclodextrin. Macromol. Symp. 2003, 192, 171–182. [Google Scholar] [CrossRef]
- Luo, M.L.; Zhang, W.G.; Zhang, S.; Fan, J.; Su, W.C.; Yin, X. Self-Assembly and Chiral Recognition of Quartz Crystal Microbalance Chiral Sensor. Chirality 2009, 22, 411–415. [Google Scholar] [CrossRef]
- De Lacy Costello, B.P.J.; Ratcliffe, N.M.; Sivanand, P.S. The synthesis of novel 3-substituted pyrrole monomers possessing chiral side groups: A study of their chemical polymerisation and the assessment of their chiral discrimination properties. Synth. Met. 2003, 139, 43–55. [Google Scholar] [CrossRef]
- Torsi, L.; Farinola, G.M.; Marinelli, F.; Tanese, M.C.; Omar, O.H.; Valli, L.; Babudri, F.; Palmisano, F.; Zambonin, P.G.; Naso, F. A sensitivity-enhanced field-effect chiral sensor. Nat. Mater. 2008, 7, 412–417. [Google Scholar] [CrossRef]
- Kurzawski, P.; Bogdanski, A.; Schurig, V.; Wimmer, R.; Hierlemann, A. Opposite Signs of Capacitive Microsensor Signals upon Exposure to the Enantiomers of Methyl Propionate Compounds. Angew. Chem. 2008, 47, 913–916. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, J.; Liu, Y.; Kong, J.; Hofstetter, O. Development of a Highly Enantioselective Capacitive Immunosensor for the Detection of α-Amino Acids. Anal. Chem. 2006, 78, 7592–7596. [Google Scholar] [CrossRef]
- Zhao, Y.; Swager, T.M. Simultaneous Chirality Sensing of Multiple Amines by 19F NMR. J. Am. Chem. Soc. 2015, 137, 3221–3224. [Google Scholar] [CrossRef] [Green Version]
- Ben-Amram, Y.; Riskin, M.; Willner, I. Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst 2010, 135, 2952–2959. [Google Scholar] [CrossRef]
- Bentley, K.W.; Wolf, C. Comprehensive Chirality Sensing: Development of Stereodynamic Probes with a Dual (Chir)optical Response. J. Org. Chem. 2014, 79, 6517–6531. [Google Scholar] [CrossRef]
- De los Santos, Z.A.; Joyce, L.A.; Sherer, E.C.; Welch, C.J.; Wolf, C. Optical Chirality Sensing with a Stereodynamic Aluminum Biphenolate Probe. J. Org. Chem. 2018. [Google Scholar] [CrossRef]
- De los Santos, Z.A.; Legaux, N.M.; Wolf, C. Chirality sensing with stereodynamic copper(I) complexes. Chirality 2017, 29, 663–669. [Google Scholar] [CrossRef]
- Drăghici, C.; Chirila, E.; Sica, M. Enantioselectivity of Chiral Pesticides in the Environment. In Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe, 1st ed.; Springer: Berlin, Germany, 2013; pp. 91–102. [Google Scholar]
- Ward, T.J.; Ward, K. Recent Progress in Chiral Stationary Phase Development and Current Chiral Applications. LC-GC Eur. 2012, 30, 43–45. [Google Scholar]
- Ward, T.J.; Ward, K. Recent Progress in Chiral Stationary Phase Development and Current Chiral Applications. LC-GC Eur. 2014, 32, 20–23. [Google Scholar]
- Padró, J.M.; Keunchkarian, S. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchem. J. 2018, 140, 142–157. [Google Scholar] [CrossRef]
- Mitchell, C.R.; Armstrong, D.W. Cyclodextrin-Based Chiral Stationary Phases for Liquid Chromatography. In Chiral Separations: Methods and Protocols; Gübitz, G., Schmid, M.G., Eds.; Humana Press: New York, NY, USA, 2004; pp. 61–112. [Google Scholar]
- Zhu, Q.; Scriba, G.K.E. Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016, 79, 1403–1435. [Google Scholar] [CrossRef]
- Berthod, A. Chiral Recognition Mechanisms. Anal. Chem. 2006, 78, 2093–2099. [Google Scholar] [CrossRef] [Green Version]
- Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent applications in chiral high performance liquid chromatography: A review. Anal. Chim. Acta 2011, 706, 205–222. [Google Scholar] [CrossRef]
- Dingenen, J.; Kinkel, J. Preparative chromatographic resolution of racemates on chiral stationary phases on laboratory and production scales by closed-loop recycling chromatography. J. Chromatogr. A 1994, 666, 627–650. [Google Scholar] [CrossRef]
- Cox, G.B. Preparative chiral separations: From laboratory scale to production. Chromatogr. Today 2009, 4, 4–7. [Google Scholar]
- Pais, L.S.; Loureiro, J.; Rodrigues, A. Chiral separation by SMB chromatography. Sep. Purif. Technol. 2000, 20, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.; Tiritan, M.; Pinto, M. Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry 2017, 9, 206. [Google Scholar] [CrossRef]
- Flack, H. Louis Pasteur’s discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Crystallogr. A 2009, 65, 371–389. [Google Scholar] [CrossRef]
Methods | Advantages | Disadvantages | Possible Scale |
---|---|---|---|
(a) Crystallization resolution | |||
(a1) Direct or preferential crystallization | Simplicity, low cost | Batch operation, resolving conglomerate | Small- and large-scale |
(a2) Diastereomeric crystallization | Simplicity, wide applicability | Expensive, difficulty in finding appropriate resolving agents | Large-scale, industrial scale |
(b) Kinetic resolution | |||
(b1) Chemical-mediated | High stability | Low efficiency | Preparative scale, large-scale |
(b2) Enzyme-mediated | High resolving efficiency | Decreasing enzyme activity, narrow application range | Preparative scale, large-scale |
(c) Chromatographic separation | |||
(c1) Supercritical fluid chromatography | Lower costs, a high efficiency, resolving most racemates | Low capacity, | Large-scale |
(c2) Simulated moving bed chromatography | Continuous operation, a high efficiency, resolving most racemates | Low capacity, | Large-scale |
(c3) Other chromatography | High efficiency, resolving most racemates | Low capacity, expensive, batch operation, slow and labor intensive | Analytical scale, preparative scale |
(d) Membrane-based separation | Low cost, energy saving, high capacity, continuous operation and easy scale-up | Low number of transfer units per apparatus | Large-scale, industrial scale |
(e) Self-disproportionation of enantiomers | Ubiquitous and spontaneous, simple, cost effective, and fully predictable (SDE via centrifugation), can be used for both liquid and crystalline Compounds (SDE via chromatography), all forms of liquid chromatography have the potential to give rise to SDE [44,48] | Does not occur with racemic compounds—instead it occurs only in case of partly enriched chiral compounds [51] | Analytical scale, preparative scale [44] |
Type of Nanostructured Material | Method of Separation/Characterization | Chiral Selector/Template | Nanostructure Dimensions | Analytes/Analysed Compounds | Ref. | |
---|---|---|---|---|---|---|
Metallic nanoparticles | AgNP | CE | β-CD | AgNPs were of the size of ca. 21 nm | 1-phenyl-1-propanol, 1-phenyl-2-propanol, and 2-phenyl-1-propanol | [87] |
Colorimetry | Nucleotide-capped AgNPs | - | d,l-Cys | [52] | ||
AuNP | Optical polarimetry | d,l-Cys-AuNPs | Average diameter of AuNPs: ~5 nm | Propylene oxide | [88] | |
Colorimetry | N-acetyl-l-Cys-capped AuNPs as chiral candidate | Size range from 6 to 8 nm | d,l-Tyr | [53] | ||
Optical polarimetry | Tetrahexahedral (THH, 24-sided) AuNPs modified with d- or l-Cys was used as chiral separator | Shape: rod-like; diameter: ~40 nm; length: ~100 nm | Propranolol | [89] | ||
CE | Streptomycin-modified gold nanoparticles (ST-AuNPs) | Particle size of AuNPs and ST-AuNPs was 53.1 nm and 79.2 nm, respectively | Adrenergic compounds: adrenaline, noradrenaline and isoprenaline | [86] | ||
Centrifugation | Functional nucleic acids-modified AuNPs | Diameter of AuNPs (for best separation efficiency): 55nm | d,l-Trp | [69] | ||
Pseudostationary phase-CEC | Thiolated β-CD-modified AuNPs | Average diameter: 9.5 ± 2.5 nm | Four amino acid enantiomers (d,l-Val, Leu, Glu and Asp) and three drug enantiomers (R,S-chlorpheniramine, zopiclone and carvedilol) | [90] | ||
Metal Oxide nanoparticles | Iron Oxide (Fe3O4) | Direct separation using a magnet | (R)- and (S)-N-(2,2-dimethyl-4-pentanoyl)-proline-3,5-dimethylanilide | The average particle size of magnetic silica nanoparticles (MSNPs): 300 nm | N-(3,5-dinitrobenzoyl)-α-amino acid N-propylamides | [91] |
HPLC | Bovine serum albumin (BSA) | Mean diameter of Fe3O4: 400 nm; thickness of silica layer in Fe3O4@SiO2: 60 nm | Trp, Phe and His | [66] | ||
HPLC | Carboxymethyl-β-CD | - | d,l-Trp, Phe and Tyr | [92] | ||
HPLC | BSA | Average size: 13.3 nm | Ibuprofen and ofloxacin | [93] | ||
Titanium dioxide (TiO2) | HPLC | Cellulose tris-(3,5-dimethyl-phenylcarbamate)-coated TiO2/SiO2 chiral stationary phase (CSP) | Size of TiO2/SiO2 spheres: ~6 nm; pore diameter: ~7 nm | Eight basic indole ring derivative enantiomers | [94] | |
CE | Tris-H3PO4 solution containing TiO2 NPs as background electrolytes (BGEs) | - | β-adrenergic drugs (atenolol, eliprolol, clorprenaline, fenoterol, metoprolol, propranolol, and terbutaline) and clenbuterol | [95] | ||
Zirconiun dioxide (ZrO2) | Separation using a magnet | Cellulose tris-(3,5-dimethylphenylcarbamate) | Average size: 340 nm | Basic β-blocker (β-antagonists) chiral drugs | [96] | |
Carbon nanostructures | Single-walled nanotubes (SWCNTs), multi-walled nanotubes (MWCNTs) | Electrokinetic chromatography (EKC) | SWCNTs and MWCNTs | SWCNT: diameters between 0.7 and 1.2 nm and lengths 2–20 mm; MWCNT: diameters between 6 and 20 nm and 1–5 mm length | (±)-ephedrine, (±)-norephedrine and (±)-N-methylephedrine | [97] |
SWCNTs | Microchip electrophoresis | BSA conjugated with the shortened carboxylic SWCNTs | - | Trp | [98] | |
HPLC | CNT monolithic column coated with a pyrenyl derivative | Average diameter: 1 nm; length: < 10 nm | A series of 10 amino acids | [99] | ||
HPLC | SWCNTs in monolithic backbones | Average diameter: ~1 nm; length 1–10 μm | α- and β-blockers, antiinflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs, and antiarrhythmic drugs | [100] | ||
MWCNTs | CE | β-CD | Interlayerspacing of 3.4 Å; typical diameter of 10–20 nm | Clenbuterol | [101] | |
TLC | Hydroxypropyl-β-CD | Diameter: 10–20 nm; length: 2–20 µm | Clenbuterol | [102] | ||
Ionic liquid dispersed MWCNTs | EC | Chondroitin sulfate E | MWCNT (od: 10–20 nm, length 5–30 nm) | Racemic drugs (amlodopine, laudanosine, nefopam, citalopram, and propranolol) | [103] | |
Carboxylated SWCNTs and MWCNTs | EKC | β-CD | Carboxylated SWCNTs: od 1~2 nm; Carboxylated MWCNTs: od 10~20 nm | Sulconazole, ketoconazole, citalopram hydrobromide, and nefopam hydrochloride | [104] | |
Graphene | HPLC | Graphene nanosheets with tetracyanoethyle oxide (TCNEO) and (S)-(+)-2-pyrrolidinemethanol | - | Ibuprofen and thalidomide racemic mixtures | [105] | |
TLC | d-TA-graphene | Thickness of graphene nanosheet: 2–3 nm | Racemic drugs (propranolol and ofloxacin) | [106] | ||
Graphene oxide (GO) | CEC | Methyl-β-CD | - | Anionic racemic drugs (naproxen,warfarin and pranoprofen) | [107] | |
CEC | β-CD conjugated GO-magnetic nanocomposites (GO/Fe3O4 NCs) | Average size of about 8 nm | d,l-Trp | [108] | ||
Open-tubular capillary electrochromatography (OTCEC) | Bovine serum albumin-conjugated graphene oxide–magnetic nanocomposites GO/Fe3O4/BSA | - | Trp, threonine (Thr), and propranolol enantiomers | [109] | ||
HPLC | Reduced graphene oxide/silica gel (rGO/SiO2) | Silica gel (particle size of 5 μm, pore size of 120 Å) | Benzene enriched enantiomers, ibuprofen, trans-stilbene oxide, 2-phenylcyclohexanone, praziquantel, propranolol, R,S-equol, ketoconazole, benzoin, and quinidine | [110] | ||
HPLC | Graphene oxide/poly(N-isopropyl-acrylamide-co-glycidyl methacrylate) (MGO/PNG-CD) | Diameter: ~80 nm; thickness: 8nm | d,l-Trp | [111] | ||
Other nanoparticles | Polystyrene nanoparticles | CE | Hydroxypropyl (HP)-β-CD | Average diameter: 15 ± 5 nm | Propranolol | [112] |
Chromatographic technique | Sulfated β-CD | Average size of ethylene dimethacrylate-N-methacryloyl-l-His methyl ester NP: ~111.5 nm | Ofloxacin | [113] | ||
Mesoporous silica nanoparticles | Direct chiral separation, CE | Teicoplanin-conjugated mesoporous silica MNPs | Average diameter: ~600 nm; mean pore size: ~3.9 nm | d,l-Trp, Phe, d,l-Mandelic acid, (±)-1-Phenyl-1,2-ethanediol, and N-Benzoyl-d,l-alanine | [67] | |
CEC | Cellulose tris-(3,5-dimethylphenyl-carbamate) | Particle size of ca. 600 nm and a pore size of ca. 3 nm | Tetrahydropalmatine and pindolol | [114] | ||
CEC | Pepsin | (±)-nefopam | [115] | |||
CE | Carboxymethyl-β-CD | Approximately 120 nm | Ephedrine and chlorpheniramine | [116] | ||
CE | BSA | Approximately 150 nm | Propranolol and Trp | [117] | ||
Metal-organic framework | HPLC | Chiral bridging ligand | - | 2-butanol and 2-methyl-1-butanol HPLC | [118] | |
GC | Chiral bridging ligand | - | Amino acid derivative | [119] |
Sensors | Sub-Categories/Types | Advantages | Disadvantages | Related References | |
---|---|---|---|---|---|
(a) | Electrochemical Sensors | Potentiometric sensors, voltammetric sensors | High sensitivity, simple operation, rapid detection, low cost, miniature size, low power requirements [186] | Poor durability, need for a reference electrode [177] | [187,188,189,190] |
(b) | Gravimetric-Mass Sensors | Quartz crystal microbalance (QCM) devices based on: CDs, molecular imprinted polymers, biological recognition elements, etc. | Capability to measure sub-nanogram level changes, possibility of real-time condensed phase measurements, long time stability | Resolution degradation due to multi resonance modes of the cantilever, limited performance due to degraded quality factor and resolution in liquid medium [191], electrochemical QCM can only be used for studying electroplated, evaporated, or sputtered materials [185] | [192,193,194] |
(c) | Electrical Sensors | Chemiresistors, organic field effect transistors, chemocapacitors | Ease of fabrication and simplicity in instrumentation, cost effective, large selection of materials and flexible | Low Thermal stability and low chemical stability (oxidation) | [195,196,197,198] |
(d) | Optical sensors | SPR sensors, fluorescence spectroscopy, circular dichroism/optical rotation probes | Speed of detection, simplicity in the measurement procedure | Low sensitivity and poor tolerance to impurities [58,199] | [176,180,200,201,202,203] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogoi, A.; Mazumder, N.; Konwer, S.; Ranawat, H.; Chen, N.-T.; Zhuo, G.-Y. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules 2019, 24, 1007. https://doi.org/10.3390/molecules24061007
Gogoi A, Mazumder N, Konwer S, Ranawat H, Chen N-T, Zhuo G-Y. Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules. 2019; 24(6):1007. https://doi.org/10.3390/molecules24061007
Chicago/Turabian StyleGogoi, Ankur, Nirmal Mazumder, Surajit Konwer, Harsh Ranawat, Nai-Tzu Chen, and Guan-Yu Zhuo. 2019. "Enantiomeric Recognition and Separation by Chiral Nanoparticles" Molecules 24, no. 6: 1007. https://doi.org/10.3390/molecules24061007
APA StyleGogoi, A., Mazumder, N., Konwer, S., Ranawat, H., Chen, N. -T., & Zhuo, G. -Y. (2019). Enantiomeric Recognition and Separation by Chiral Nanoparticles. Molecules, 24(6), 1007. https://doi.org/10.3390/molecules24061007