Analysis of Enantiomers in Products of Food Interest
Abstract
:1. Introduction
2. General Separation Methods in Chiral Resolution
3. The Most Used Chiral Stationary Phases for Enantiomers Separation
4. Some Selected Applications to Enantiomers Separation in Food Chemistry
4.1. Supercritical Fluid Chromatography
4.2. High-Performance Liquid Chromatography
4.3. Gas Chromatography
5. Conclusions
Funding
Conflicts of Interest
References
- Gil-Av, E. Present status of enantiomeric analysis by gas chromatography. J. Mol. Evol. 1975, 6, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Novell, A.; Méndez, A.; Minguillón, C. Effects of supercritical fluid chromatography conditions on enantioselectivity and performance of polyproline-derived chiral stationary phases. J. Chromatogr. A 2015, 1403, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Albals, D.; Vander Heyden, Y.; Schmid, M.G.; Chankvetadze, B.; Mangelings, D. Chiral separations of cathinone and amphetamine-derivatives: Comparative study between capillary electrochromatography, supercritical fluid chromatography and three liquid chromatographic modes. J. Pharm. Biomed. Anal. 2016, 121, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.W.; Faulkner, J.R.J.; Han, S.M. Use of hydroxypropyl and hydroxyethyl-derivatized -cyclodextrins for the thin-layer chromatographic separation of enantiomers and diastereomers. J. Chromatogr. 1988, 452, 323–330. [Google Scholar] [CrossRef]
- Khundadze, N.; Pantsulaia, S.; Fanali, C.; Farkas, T.; Chankvetadze, B. On our way to sub-second separations of enantiomers in high-performance liquid chromatography. J. Chromatogr. A 2018, 1572, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Si-Ahmed, K.; Aturki, Z.; Chankvetadze, B.; Fanali, S. Evaluation of novel amylose and cellulose-based chiral stationary phases for the stereoisomer separation of flavanones by means of nano-liquid chromatography. Anal. Chim. Acta 2012, 738, 85–94. [Google Scholar] [CrossRef]
- Aturki, Z.; Rocco, A.; Rocchi, S.; Fanali, S. Current applications of miniaturized chromatographic and electrophoretic techniques in drug analysis. J. Pharm. Biomed. Anal. 2014, 101, 194–220. [Google Scholar] [CrossRef]
- Fanali, S. Nano-liquid chromatography applied to enantiomers separation. J. Chromatogr. A 2017, 1486, 20–34. [Google Scholar] [CrossRef]
- Davankov, V.A. The nature of chiral recognition:is it a three-point interaction? Chirality 1997, 9, 99–102. [Google Scholar] [CrossRef]
- Cagliero, C.; Sgorbini, B.; Cordero, C.; Liberato, E.; Rubiolo, P.; Bicchi, C. Enantioselective Gas Chromatography with DerivatizedCyclodextrins in the Flavour and Fragrance Field. Isr. J. Chem. 2016, 56, 925–939. [Google Scholar] [CrossRef]
- West, C. Enantioselective separations with supercritical fluids—Review. Curr. Anal. Chem. 2014, 10, 99–120. [Google Scholar] [CrossRef]
- Chankvetadze, B. Capillary Electrophoresis in Chiral Analysis, 1st ed.; John Wiley & Sons: Chichester, UK, 1997; pp. 1–555. [Google Scholar]
- Chankvetadze, B. Contemporary theory of enantioseparations in capillary electrophoresis. J. Chromatogr. A 2018, 1567, 2–25. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B. Liquid chromatographic separation of enantiomers. In Liquid Chromatography, 2nd ed.; Fanali, S., Haddad, P.R., Poole, C.F., Riekkola, M.-L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 2, pp. 69–86. [Google Scholar]
- Patel, D.C.; Waha, M.F.; Armstrong, D.W.; Breitbach, Z.S. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J. Chromatogr. A 2016, 1467, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Lomsadze, K.; Jibuti, G.; Farkas, T.; Chankvetadze, B. Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles. J. Chromatogr. A 2012, 1234, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Yamamoto, C.; Okamoto, Y. Very Fast Enantioseparation in High-performance Liquid Chromatography Using Cellulose Tris(3,5-dimethylphenylcarbamate) Coated on Monolithic Silica Support. Chem. Lett. 2003, 32, 850–851. [Google Scholar] [CrossRef]
- Chankvetadze, B.; Yamamoto, C.; Kamigaito, M.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5- dimethylphenylcarbamate). J. Chromatogr. A 2006, 1110, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Khatiashvili, T.; Kakava, R.; Matarashvili, I.; Tabani, H.; Fanali, C.; Volonterio, A.; Farkas, T.; Chankvetadze, B. Separation of enantiomers of selected chiral sulfoxides with cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral columns in high-performance liquid chromatography with very high separation factor. J. Chromatogr. A 2018, 1545, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Dong, F.; Xu, J.; Liu, X.; Chen, Z.; Zheng, Y. Stereoselective analysis of novel chiral fungicide pyrisoxazole in cucumber, tomato and soil under different application methods with supercritical fluid chromatography/tandem mass spectrometry. J. Hazard. Mater. 2016, 311, 115–124. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, G.; Kakava, R.; Volonterio, A.; Fanali, S.; Chankvetadze, B. An attempt for fast separation of enantiomers in nano-liquid chromatography and capillary electrochromatography. Electrophoresis 2017, 38, 1932–1938. [Google Scholar] [CrossRef]
- D’Orazio, G.; Fanali, C.; Karchkhadze, M.; Chankvetadze, B.; Fanali, S. Enantiomeric separation of some chiral analytes using amylose 3,5-dimethylphenylcarbamate covalently immobilized on silica by nano-liquid chromatography and capillary electrochromatography. J. Chromatogr. A 2017, 1520, 127–134. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, G.; Fanali, C.; Asensio-Ramos, M.; Fanali, S. Chiral separations in food analysis. TrAC Trends Anal. Chem. 2017, 96, 151–171. [Google Scholar] [CrossRef]
- Marsol-Vall, A.; Sgorbini, B.; Cagliero, C.; Bicchi, C.; Eras, J.; Balcells, M. Volatile composition and enantioselective analysis of chiral terpenoids of nine fruit and vegetable fibres resulting from juice industry by-products. J. Chem. 2017, 2017, 8675014. [Google Scholar] [CrossRef]
- Schurig, V.; Mayer, S. Separation of enantiomers by open capillary electrochromatography on polysiloxane-bonded permethyl-beta-cyclodextrin. J. Biochem. Biophys. Methods 2001, 48, 117–141. [Google Scholar] [CrossRef]
- Sun, P.; Armstrong, D.W. Effective enantiomeric separations of racemic primary amines by the isopropyl carbamate-cyclofructan6 chiral stationary phase. J. Chromatogr. A 2010, 1217, 4904–4918. [Google Scholar] [CrossRef] [PubMed]
- Lajkó, G.; Grecsó, N.; Tóth, G.; Fülöp, F.; Lindner, W.; Ilisz, I.; Péter, A. Liquid and subcritical fluid chromatographic enantioseparation of Nα-Fmoc proteinogenic amino acids on Quinidine-based zwitterionic and anion-exchanger type chiral stationary phases. A comparative study. Chirality 2017, 29, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Ilisz, I.; Bajtai, A.; Lindner, W.; Péter, A. Liquid chromatographic enantiomer separations applying chiral ion-exchangers based on Cinchona alkaloids. J. Pharm. Biomed. Anal. 2018, 159, 127–152. [Google Scholar] [CrossRef]
- Schmitt, K.; Woiwode, U.; Kohout, M.; Zhang, T.; Lindner, W.; Lämmerhofer, M. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: Effect of particle and pore size on chromatographic efficiency and kinetic performance. J. Chromatogr. A 2018, 1569, 149–159. [Google Scholar] [CrossRef]
- Patel, D.C.; Breitbach, Z.S.; Yu, J.; Nguyen, K.A.; Armstrong, D.W. Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal. Chim. Acta 2017, 963, 164–174. [Google Scholar] [CrossRef]
- Wahab, M.F.; Wimalasinghe, R.M.; Wang, Y.; Barhate, C.L.; Patel, D.C.; Armstrong, D.W. Salient Sub-Second Separations. Anal. Chem. 2016, 88, 8821–8826. [Google Scholar] [CrossRef]
- Barhate, C.L.; Regalado, E.L.; Contrella, N.D.; Lee, J.; Jo, J.; Makarov, A.A.; Armstrong, D.W.; Welch, C.J. Ultrafast Chiral Chromatography as the Second Dimension in Two-Dimensional Liquid Chromatography Experiments. Anal. Chem. 2017, 89, 3545–3553. [Google Scholar] [CrossRef]
- Orosz, T.; Grecsó, N.; Lajkó, G.; Szakonyi, Z.; Fülöp, F.; Armstrong, D.W.; Ilisz, I.; Péter, A. Liquid chromatographic enantioseparation of carbocyclic β-amino acids possessing limonene skeleton on macrocyclic glycopeptide-based chiral stationary phases. J. Pharm. Biomed. Anal. 2017, 145, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Ismail, O.H.; Ciogli, A.; Villani, C.; De Martino, M.; Pierini, M.; Cavazzini, A.; Bell, D.S.; Gasparrini, F. Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2μm totally porous silica particles of narrow size distribution. J. Chromatogr. A 2016, 1427, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Ismail, O.H.; Antonelli, M.; Ciogli, A.; Villani, C.; Cavazzini, A.; Catani, M.; Felletti, S.; Bell, D.S.; Gasparrini, F. Future perspectives in high efficient and ultrafast chiral liquid chromatography through zwitterionic teicoplanin-based 2-μm superficially porous particles. J. Chromatogr. A 2017, 1520, 91–102. [Google Scholar] [CrossRef]
- Rocchi, S.; Fanali, C.; Fanali, S. Use of a Novel Sub-2 μm Silica Hydride Vancomycin Stationary Phase in Nano-Liquid Chromatography. II. Separation of Derivatized Amino Acid Enantiomers. Chirality 2015, 27, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Harps, L.C.; Joseph, J.F.; Parr, M.K. SFC for chiral separations in bioanalysis. J. Pharm. Biomed. Anal. 2019, 162, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Fan, J.; He, R.; Guo, D.; Wang, T.; Zhang, H.; Zhang, W. High-fast enantioselective determination of prothioconazole in different matrices by supercritical fluid chromatography and vibrational circular dichroism spectroscopic study. Talanta 2018, 187, 40–46. [Google Scholar] [CrossRef]
- Tao, Y.; Zheng, Z.; Yu, Y.; Xu, J.; Liu, X.; Wu, X.; Dong, F.; Zheng, Y. Supercritical fluid chromatography–tandem mass spectrometry-assisted methodology for rapid enantiomeric analysis of fenbuconazole and its chiral metabolites in fruits, vegetables, cereals, and soil. Food Chem. 2018, 241, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Fan, J.; Gao, R.; He, R.; Wang, T.; Zhang, Y.; Zhang, W. Stereoselective quantification of triticonazole in vegetables by supercritical fluid chromatography. Talanta 2017, 164, 362–367. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, Y.; Dong, F.; Li, J.; Zhang, Y.; Sun, S.; Li, N.; Cui, X.; Wang, Y.; Pan, X.; et al. Stereoselective analysis & dissipation of propiconazole in wheat, grapes, & soil by supercritical fluid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2017, 65, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Parr, M.K.; Blokland, M.H.; Liebetrau, F.; Schmidt, A.H.; Meijer, T.; Stanic, M.; Kwiatkowska, D.; Waraksa, E.; Sterk, S.S. Distinction of clenbuterol intake from drug or contaminated food of animal origin in a controlled administration trial–the potential of enantiomeric separation for doping control analysis. Food Addit. Contam. Part A 2017, 34, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, T.; Zhang, Q.; Liu, Y.; Li, L.; Si, J.; Zou, Z.; Hua, H. Isobutylhydroxyamides from Sichuan Pepper and Their Protective Activity on PC12 Cells Damaged by Corticosterone. J. Agric. Food Chem. 2018, 66, 3408–3416. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Z.; Tang, B.; Gao, B.; Tian, M.; Sanganyado, E.; Shi, H.; Wang, M. Mechanistic Insights into Stereospecific Bioactivity and Dissipation of Chiral Fungicide Triticonazole in Agricultural Management. J. Agric. Food Chem. 2018, 66, 7286–7293. [Google Scholar] [CrossRef]
- Yang, X.; Qi, P.; Wang, X.; Wang, Z.; Sun, Y.; Wang, L.; Xu, X.; Xu, H.; Wang, Q.; Wang, X.; et al. Stereoselective Analysis and Degradation of Pyrisoxazole in Cabbage, Pakchoi, and Pepper by Liquid Chromatography Tandem Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 8295–8301. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, X.; Di, S.; Qi, P.; Sun, Y.; Yang, X.; Zhao, C.; Wang, X. Enantioselective analysis and degradation of isofenphos-methyl in vegetables by liquid chromatography-tandem mass spectrometry. Environ. Sci. Pollut. Res. 2018, 25, 18772–18780. [Google Scholar] [CrossRef]
- He, R.; Fan, J.; Tan, Q.; Lai, Y.; Chen, X.; Wang, T.; Jiang, Y.; Zhang, Y.; Zhang, W. Enantioselective determination of metconazole in multi matrices by high-performance liquid chromatography. Talanta 2018, 178, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Capone, D.L.; Jeffery, D.W. Chiral analysis of 3-sulfanylhexan-1-ol and 3-sulfanylhexyl acetate in wine by high-performance liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2018, 998, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lou, L.L.; Wang, W.; Lin, B.; Chen, J.N.; Wang, X.B.; Huang, X.X.; Song, S.J. Enantiomeric 8-O-4′ type neolignans from red raspberry as potential inhibitors of β-amyloid aggregation. J. Funct. Foods 2017, 37, 322–329. [Google Scholar] [CrossRef]
- Rimkus, G.G.; Hoffmann, D. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey. Food Addit. Contam. Part A 2017, 34, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Qiao, L.; Sun, R.; Luo, X.; Zheng, J.; Xie, Q.; Sun, Y.; Mai, B. Alteration of Diastereoisomeric and Enantiomeric Profiles of Hexabromocyclododecanes (HBCDs) in Adult Chicken Tissues, Eggs, and Hatchling Chickens. Environ. Sci. Technol. 2017, 51, 5492–5499. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Liu, D.; Liu, C.; Liang, Y.; Zhan, J.; Zhou, Z.; Wang, P. Enantioselective behaviour of the herbicide fluazifop-butyl in vegetables and soil. Food Chem. 2017, 221, 1120–1127. [Google Scholar] [CrossRef]
- Nagai, T.; Ishikawa, K.; Yoshinaga, K.; Yoshida, A.; Beppu, F.; Gotoh, N. Homochiral asymmetric triacylglycerol isomers in egg yolk. J. Oleo Sci. 2017, 66, 1293–1299. [Google Scholar] [CrossRef]
- Konya, Y.; Taniguchi, M.; Fukusaki, E. Novel high-throughput and widely-targeted liquid chromatography–time of flight mass spectrometry method for D-amino acids in foods. J. Biosci. Bioeng. 2017, 123, 126–133. [Google Scholar] [CrossRef]
- Taniguchi, M.; Konya, Y.; Nakano, Y.; Fukusaki, E. Investigation of storage time-dependent alterations of enantioselective amino acid profiles in kimchi using liquid chromatography-time of flight mass spectrometry. J. Biosci. Bioeng. 2017, 124, 414–418. [Google Scholar] [CrossRef]
- Nakano, Y.; Konya, Y.; Taniguchi, M.; Fukusaki, E. Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace D-amino acids. J. Biosci. Bioeng. 2017, 123, 134–138. [Google Scholar] [CrossRef]
- Ye, X.; Ma, S.; Zhang, L.; Zhao, P.; Hou, X.; Zhao, L.; Liang, N. Trace enantioselective determination of triazole fungicides in honey by a sensitive and efficient method. J. Food Compos. Anal. 2018, 74, 62–70. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Gao, X.; Guo, X.; Zhao, L. Simultaneous enantioselective determination of 22 chiral pesticides in fruits and vegetables using chiral liquid chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 277, 298–306. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Gao, B.; Gou, G.; Li, L.; Shi, H.; Wang, M. Simultaneous Enantioselective Determination of the Chiral Fungicide Prothioconazole and Its Major Chiral Metabolite Prothioconazole-Desthio in Food and Environmental Samples by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 8241–8247. [Google Scholar] [CrossRef]
- Pan, X.; Dong, F.; Liu, N.; Cheng, Y.; Xu, J.; Liu, X.; Wu, X.; Chen, Z.; Zheng, Y. The fate and enantioselective behavior of zoxamide during wine-making process. Food Chem. 2018, 248, 14–20. [Google Scholar] [CrossRef]
- Pan, X.; Dong, F.; Chen, Z.; Xu, J.; Liu, X.; Wu, X.; Zheng, Y. The application of chiral ultra-high-performance liquid chromatography tandem mass spectrometry to the separation of the zoxamide enantiomers and the study of enantioselective degradation process in agricultural plants. J. Chromatogr. A 2017, 1525, 87–95. [Google Scholar] [CrossRef]
- Aydoğan, C. Chiral separation and determination of amino acid enantiomers in fruit juice by open-tubular nano liquid chromatography. Chirality 2018, 30, 1144–1149. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhang, X.; Qiu, J.W.; Leung, K.M.Y.; Lam, J.C.W.; Lam, P.K.S. Stereoisomer-Specific Trophodynamics of the Chiral Brominated Flame Retardants HBCD and TBECH in a Marine Food Web, with Implications for Human Exposure. Environ. Sci. Technol. 2018, 52, 8183–8193. [Google Scholar] [CrossRef]
- Cutillas, A.B.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Thyme essential oils from Spain: Aromatic profile ascertained by GC–MS, and their antioxidant, anti-lipoxygenase and antimicrobial activities. J. Food Drug Anal. 2018, 26, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Gao, J.; Zhang, C.; Jiang, W.; Wang, P.; Liu, X.; Liu, D.; Zhou, Z. Enantioselective degradation of the chiral alpha-cypermethrin and detection of its metabolites in five plants. Environ. Sci. Pollut. Res. 2019, 26, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Qian, Y.L.; Qian, M.C. Flavor and chiral stability of lemon-flavored hard tea during storage. Food Chem. 2018, 239, 622–630. [Google Scholar] [CrossRef] [PubMed]
Samples | Matrix | Sample Preparation | Technique | Column and Chiral Stationary Phase | Mobile Phase | Detection | References |
---|---|---|---|---|---|---|---|
(R) and (S)-Prothioconazole | Tomatoes | QuEChERS | SFC | cellulose tris(3,5-dimethylphenylcarbamate)-silica coated, EnantioPak (China) (150 × 4.6 mm, 5 µm) | CO2/2-propanol (80:20, v/v); 2.5. mL/min | UV, 254 nm | [38] |
Fenbuconazole and metabolites | tomatoes, cucumbers, apples, peaches, rice and wheat, | QuEChERS | SFC | amylose tris-(3,5-dimethylphenylcarbamate)-coated chiral column | CO2/ethanol; 1.8 mL/min | MS/MS | [39] |
Triticonazole | cucumbers and tomatoes | QuEChERS | SFC | tris(3,5-dimethylphenylcarbamoyl) cellulose-coated silica gel EnantioPak OD column (China) (150 mm × 4.6 mm, 5 µm) | CO2/ethanol (80:20, v/v) | - | [40] |
Propiconazole | Wheat | Solid phase | SFC | Amylose tris(3,5-dimethylphenylcarbamate) and immobilized Amylose tris(3,5-dimethylphenylcarbamate), Chiralpak AD-3 and IA3, respectively (Daicel Chemical Industries, Japan) (150 mm × 4.6 mm i.d., 3 μm particle size) | CO2/ethanol (93:7, v/v) | MS/MS | [41] |
Clenbuterol | Meat | Liquid-liquid extractionand Solid phase | SFC or HPLC | Vancomycin, Astecchirobiotic V2 (150 × 4.6 mm or 2.1 mm, particle size 5 µm); Teicoplanin, Astecchirobiotic T (150 × 4.6 mm or 2.1 mm, particlesize 5 µm); | CO2/ammonia or formic acid in SFC and MeOH (with water or ACN or 2-propanol) in HPLC | MS/MS | [42] |
Isobutylhydroxyamides ZP-amide A and ZP-amide B | Pepper | Liquid-liquid extraction | SFC or HPLC | Amylose tris-(3,5-dimethylphenylcarbamate) coated, Chiralpak AD-H column (chiral column 1); Amylose tris(5-chloro-2-methylphenylcarbamate) coated, Chiralpak AY-H column (chiral column 2) (15 cm × 3 cm i.d., 5 μm; 15 cm × 3 cm i.d., 5 μm,); Chiralpak AD-H column (chiral column 3); (25 cm × 0.46 cm i.d., 5 μm, 15 cm × 0.46 cm i.d.) | SFC, (40% MeOH, 3 mL/min); HPLC different MP (ethanol/diethylamine (100:0.1 v/v); 0.2 mL/min) or n-hexane/isopropanol/diethylamine(85:15:0.1 v/v/v); 1 mL/min or n-hexane/ethanol/diethylamine (85:15:0.1 v/v/v); 1 mL/min) | MS | [43] |
Samples | Matrix | Sample Preparation | Technique | Column and Chiral Stationary Phase | Mobile Phase | Detection | References |
---|---|---|---|---|---|---|---|
(R,S)-triticonazole | Vegetables (tomatos, spinach, cucumber) | Liquid-liquid extraction and Solid phase | HPLC | cellulose tris (3-chloro-4-methylphenylcarbamate) (Lux Cellulose-2); 3-μm particles (250 mm or 4.6 mm i.d.) | - | UV | [44] |
Isofenphos-methyl, (R,S)-O-methyl-O-(2-isopropoxcarbonyl)-phenyl-N-isopropylphosphora-midothioate | cowpea, cucumber, and pepper | QuEChERS | HPLC-MS/MS | Lux cellulose-3 chiral, column (250 mm × 4.6 mm i.d., 5 μm, | Isocratic, 0.80 mL/min | MS | [46] |
Metconazole | Flour | QuEChERS | HPLC | Cellulose 3, 5-dimethylphenylcarbamate Enantiopak OD column | n-hexane-ethanol mixture (97:3, v/v) at the flow rate of 1.0 mL/min | UV, 220 nm | [47] |
Thiols 3-sulfanylhexan-1-ol and its O-acetate, 3-sulfanylhexyl acetate | Wine | Solid phase | HPLC | Lux Amilose 1 and 2, cellulose 1 | Gradient, 5 mM aqueous ammonium bicarbonate (A, pH 8.7) and acetonitrile (B) | MS/MS | [48] |
8-O-4′ type neolignans | Raspberry | - | HPLC | Chiralpak AD-H 250 × 4.6 mm, 5 μm | 2-propanol-n-hexane (various ratios) | Polarimeter | [49] |
Fungicide pyrisoxazole | Pakchoi, pepper, cabbage | QuEChERS | HPLC | cellulose tris(4-methylbenzoate)-Lux Cellulose-3, 150 mm × 2.0 mm, 3 μm | methanol and water (70:30 v/v), 0.35 mL/min | MS/MS | [45] |
Chloramphenicol | Honey | Liquid-liquid extraction | HPLC | Chiralpak AGP, 3 × 5 mm, 5 μm | Gradient, water with 0.01% acetic acid (A) and methanol with 0.01% acetic acid (B) | MS/MS | [50] |
α- and γ-Hexabromocyclododecanes | egg | Soxhlet extraction | HPLC | Permethylated-β-cyclodextrin-Chiral column Nucleosilβ-PM Macherey-Nagel,(GmbH & Co., Düren, Germany), 20 cm × 4 mm × 5 μm | - | MS | [51] |
Fluazifop-butyl and fluazifop | tomato, cucumber, pakchoi, rape | Liquid-liquid extraction | HPLC | Cellulose tris(3,5-dichlorophenylcarbamate) Chiralpak IC, 2504.6 mm I.D., 5μm particles | Not reported | MS/MS | [52] |
Triacylglycerol | Chicken yolk and meat | Liquid-liquid extraction | HPLC | CHIRALCEL OD-3R, (Daicel Corporation, Tokyo, Japan) 4.6 mm i.d. ×150 mm, | Methanol, 0.5 mL min−1 | MS | [53] |
Amino acids several | Vinegar, milk, kimchi, yogurt | Liquid-liquid extraction | HPLC | CROWNPAK CRIchiral column. | Acetonitrile/ethanol/water/TFA (80/15/5/0.5, v/v/v/v) | TOFMS | [54] |
Amino acids | Chimchi (fermented vegetables) | Liquid-liquid extraction | HPLC | CROWNPAK CR-I(+) column, 3.0 mm i.d. 150 mm; particle size, 5 μm | Acetonitrile, ethanol, water, and TFA (80:15:5:0.5, v/v/v/v) | TOFMS | [55] |
Amino acids | Vinegars | Liquid-liquid extraction | HPLC | CROWNPAK CR-I(+) and CR-I(−)(Daicel CPI, Osaka, Japan) (3.0 mm i.d. 150 mm, 5 μm) | acetonitrile, ethanol, water and TFA (80:15:5:0.5, v/v/v/v) | MS/MS | [56] |
Triazole fungicide (paclobutrazol, myclobutanil, diniconazole, epoxiconazole) | Honey | Solid phase | HPLC | Chiralcel OD-RH column (150 mm × 4.6 mm, 5 μm, daicel, Japan) | ACN/2mM ammonium acetate, 50:42 (v/v) | MS/MS | [57] |
Pesticides | cucumber, tomato, cabbage, grape, mulberry, apple and pear | Magnetic solid phase extraction | HPLC | Chiralpak IG column (250 mm × 4.6 mm, i.d. 5 μm, Daicel, Japan) | ACN/ water containing 5 mmol L−1 ammonium acetate and 0.1% (v/v) formic acid (65:35, v/v) | MS/MS | [58] |
Fungicide prothioconazole and metabolites | Cucumber, pear | QuEChERS and Solid phase | UHPLC and HPLC | Cellulose-tris(4-methylbenzoate) Lux Cellulose-3, 2 or 3, 250 mm × 4.6 mm i.d., 5 μm and 150 mm × 2 mm i.d., 3 μm, | Acetonitrile:water | MS/MS | [59] |
(R,S)-zoxamide | wine | - | UHPLC | Lux Amylose-2 chiral column (150 mm × 2 mm, 3 μm particle | acetonitrile and water (70:30, v/v), 0.5 mL/min | MS/MS | [60] |
Zoxamide | Vegetable (tomato, cucumber), pepper, potato, grape, strawberry | - | UHPLC | Lux Amylose-2, 150 mm × 2 mm, 3 μm particle size | acetonitrile/water (70:30 v/v), 0.5 mL/min | MS/MS | [61] |
Amino acids (derivatized with fluorescein isothiocyanate, FITC) (glutamic acid, aspartic acid, isoleucine, tryptophan, phenylalanine, tyrosine, histidine, proline) | Apple juice | - | Nano-LC (open tubular) | polymerization of 3-chloro-2-hydroxypropylmethacrylate (HPMA-Cl) and ethylene dimethacrylate (EDMA) with bonded β-cyclodextrin; 15 cm and i.d. 75 μm | acetonitrile:methanol:H2O at 0.1% v/v TFA (85:10:5, v/v/v); flow rate; 800 nL/min | UV, 214 nm | [62] |
Samples | Matrix | Sample Preparation | Technique | Column and Chiral Stationary Phase | Mobile Phase | Detection | References |
---|---|---|---|---|---|---|---|
TBECH enantiomers 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (α, β, γ, δ) HBCD 1,2,5,6,9,10-hexabromocyclododecane (α, β, γ) | Marine organisms, including 5 mollusk species, 6 crustacean species, and 19 fish species | pressurized fluid extraction | GC | CHIRALDEX B-TA capillary column (30 m × 0.25 mm i.d., 0.12 μm film thickness) | Carrier:40% methane in a helium carrier gas at a constant flow of 1.2 mL/min. | MS | [63] |
α-pinene, β-pinene, borneol, camphene, carvone, linalool, limonene, α-terpineol, α-ionene, terpinen-4-ol | Juices (apple, pear, peach, carrot, lemon flesh, orange flesh, orange peel, tangerine flesh), and tangerine peel | Headspace Solid-Phase Microextraction (HS-SPME) | GC | 30% 2,3-di-O-ethyl-6-O-tert-butyldimethylsilyl-β-cyclodextrin (diEt-CD) and 30% 2,6-dimethyl-3-O-pentyl-β-cyclodextrin (Pentyl-CD) coated | Hydrogen as carrier gas (1.25 mL/min) | MS | [24] |
α-pinene, limonene, linalool, β-caryophyllene | Essential oil Thyme | Steam distillation | GC | non-bonded 2,3-di-O-methyl-6-tbutyl silyl derivative of β-cyclodextrin AstecChiraldex B-DM column (30 m length 0.25 mm internal, diameter 0.12 μm film thickness) | hydrogen as carrier gas (constant flow of 2.5 mL/min, 8 psistarting column head pressure | Electronic impact ionization and MS | [64] |
Pyrethroid insecticide (α-cypermethrin) | tomato, cucumber, rape, cabbage, and pepper | Liquid-liquidextraction | GC | BGB-172 chiral column | N2 100–220 °C | ECD | [65] |
Limonene, linalool, α-terpineol and 4-terpineol | Tea | Solid-Phase Microextraction | 2D-GC | DB-WAX column (30 m × 0.25 mm i.d., 0.5 μm film thickness) (first) Cyclosil-B column (30 m × 0.25 mm i.d., 0.25 μm film thickness) (second) | helium at 1.2 mL/min | MS | [66] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanali, C.; D’Orazio, G.; Gentili, A.; Fanali, S. Analysis of Enantiomers in Products of Food Interest. Molecules 2019, 24, 1119. https://doi.org/10.3390/molecules24061119
Fanali C, D’Orazio G, Gentili A, Fanali S. Analysis of Enantiomers in Products of Food Interest. Molecules. 2019; 24(6):1119. https://doi.org/10.3390/molecules24061119
Chicago/Turabian StyleFanali, Chiara, Giovanni D’Orazio, Alessandra Gentili, and Salvatore Fanali. 2019. "Analysis of Enantiomers in Products of Food Interest" Molecules 24, no. 6: 1119. https://doi.org/10.3390/molecules24061119
APA StyleFanali, C., D’Orazio, G., Gentili, A., & Fanali, S. (2019). Analysis of Enantiomers in Products of Food Interest. Molecules, 24(6), 1119. https://doi.org/10.3390/molecules24061119