Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review
Abstract
:1. Introduction
Healthy Ranges
2. Iron Levels in Alcoholism
2.1. Concentration of Iron in the Liver
2.2. Iron Accumulation and the Role of Hepcidin
2.3. sTfR Receptor as a Marker in Alcoholism
2.4. Concentration of Iron in the Brain
3. Magnesium Levels in Alcoholism
3.1. Alcohol as a Reason of Hypomagnesemia
3.2. Concentration of Ionized Magnesium in the Erythrocytes and Blood Plasma
3.3. Hypomagnesemia and Cardiovascular System
3.4. Effects of the Hypomagnesemia on the Digestive System
3.5. Alcohol Intake and Paralysis
3.6. Hypomagnesemia and Neural Dysfunctions
3.7. Hypomagnesemia and Level of Other Ions
4. Copper levels in Alcoholism
4.1. Copper in the Case of Alcoholism: Deficiency or Increased Levels?
4.2. The Relationship Between Copper and Zinc
4.3. The Relationship Between Copper and Iron
4.4. Copper Deficiency and Lipid Metabolism
4.5. Serum Copper Levels and Hepatitis C Virus (HCV) Infection
4.6. Copper Muscle Content
5. Manganese in Alcoholism
5.1. Manganese in the Case of Alcoholism: Always Overload?
5.2. Manganese and Liver Cirrhosis
5.3. Manganese as a Neurotoxin
5.4. Bone Manganese Levels and Alcohol Abuse
6. Conclusions
Funding
Conflicts of Interest
References
- Lieb, M.; Palm, U.; Hock, B.; Schwarz, M.; Domke, I.; Soyka, M. Effects of alcohol consumption on iron metabolism. Amer. J. Drug Alcoh. Abuse 2010, 37, 68–73. [Google Scholar] [CrossRef]
- Lorcerie, B.; Audia, S.; Samson, M.; Millière, A.; Falvo, N.; Leguy-Seguin, V.; Bonnotte, B. Diagnosis of hyperferritinemia in routine clinical practice. La Presse Médicale 2017, 46. [Google Scholar] [CrossRef]
- Konrad, M.; Schlingmann, K.P.; Gudermann, T. Insights into the molecular nature of magnesium homeostasis. Amer. J. Physiol. Renal Physiol. 2004, 286. [Google Scholar] [CrossRef]
- Saito, M.; Sawayama, T. Visualised manganese ion within the basal ganglia and long axonal tracts. J. Neurol. Neuros. Psych. 2009, 80, 695. [Google Scholar] [CrossRef]
- Chanraud, S.; Martelli, C.; Delain, F.; Kostogianni, N.; Douaud, G.; Aubin, H.; Martinot, J. Brain Morphometry and Cognitive Performance in Detoxified Alcohol-Dependents with Preserved Psychosocial Functioning. Neuropsychopharmacology 2006, 32, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Mann, K.; Agartz, I.; Harper, C.; Shoaf, S.; Rawlings, R.R.; Momenan, R.; Heinz, A. Neuroimaging in Alcoholism: Ethanol and Brain Damage. Alcohol. Clin. Exp. Res. 2001, 25. [Google Scholar] [CrossRef]
- Sutherland, G.T.; Sheedy, D.; Kril, J.J. Neuropathology of alcoholism. Handb. Clin. Neurol. 2014, 125, 603–615. [Google Scholar] [CrossRef]
- Deugnier, Y.; Bardou-Jacquet, É.; Lainé, F. Dysmetabolic iron overload syndrome (DIOS). La Presse Médicale 2017, 46. [Google Scholar] [CrossRef]
- Whitfield, J.B.; Zhu, G.; Madden, P.A.; Montgomery, G.W.; Heath, A.C.; Martin, N.G. Biomarker and Genomic Risk Factors for Liver Function Test Abnormality in Hazardous Drinkers. Alcohol. Clin. Exp. Res 2019, 43, 473–482. [Google Scholar] [CrossRef]
- Bermejo, F.; García-López, S. A guide to diagnosis of iron deficiency and iron deficiency anemia in digestive diseases. World J. Gastroenterol. 2009, 15, 4638–4643. [Google Scholar] [CrossRef]
- Soppi, E.T. Iron deficiency without anemia-a clinical challenge. Clin. Case Rep. 2018, 6, 1082–1086. [Google Scholar] [CrossRef]
- Matos, L.C.; Batista, P.; Monteiro, N.; Ribeiro, J.; Cipriano, M.A.; Henriques, P.; Carvalho, A. Iron stores assessment in alcoholic liver disease. Scand. J. Gastroenterol. 2013, 48, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Radicheva, M.P.; Andonova, A.N.; Milcheva, H.T.; Ivanova, N.G.; Kyuchukova, S.G.; Nikolova, M.S.; Platikanova, M.S. Serum Markers of Iron Metabolism in Chronic Liver Diseases. J. Med. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Buyukasik, N.S.; Nadir, I.; Akin, F.E.; Cakal, B.; Kav, T.; Ersoy, O.; Buyukasik, Y. Serum iron parameters in cirrhosis and chronic hepatitis: Detailed description. Turk. J. Gastroenterol. 2011, 22, 606–611. [Google Scholar] [CrossRef]
- Evangelista, A.S.; Nakhle, M.C.; Araújo, T.F.; Abrantes-Lemos, C.P.; Deguti, M.M.; Carrilho, F.J.; Cançado, E.L. HFE Genotyping in Patients with Elevated Serum Iron Indices and Liver Diseases. BioMed. Res. Int. 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Dominitz, J.A.; Weiss, N.S.; Heagerty, P.J.; Kowdley, K.V. The effect of alcohol consumption on the prevalence of iron overload, iron deficiency, and iron deficiency anemia. Gastroenterology 2004, 126, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Purohit, V.; Russo, D.; Salin, M. Role of iron in alcoholic liver disease: Introduction and summary of the symposium. Alcohol 2003, 30, 93–97. [Google Scholar] [CrossRef]
- Wang, H.J. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J. Gastroenterol. 2010, 16, 1304. [Google Scholar] [CrossRef]
- García-Valdecasas-Campelo, E.; González-Reimers, E.; Santolaria-Fernández, F.; Vega-Prieto, M.J.; Milena-Abril, A.; Sánchez-Pérez, M.J.; Rodríguez-Rodríguez, E. Brain atrophy in alcoholics: Relationship with alcohol intake; liver disease; nutritional status, and inflammation. Alcohol Alcohol. 2007, 42, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Hoek, J.B.; Cahill, A.; Pastorino, J.G. Alcohol and mitochondria: A dysfunctional relationship. Gastroenterology 2002, 122, 2049–2063. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Haldar, S.; Tripathi, A.K.; Horback, K.; Wong, J.; Sharma, D.; Singh, A. Brain Iron Homeostasis: From Molecular Mechanisms To Clinical Significance and Therapeutic Opportunities. Ant. Redox Signaling 2014, 20, 1324–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, S.; Zheng, G.; Shen, W.; Liu, S.; Zhang, L.J.; Haacke, E.M.; Lu, G.M. Quantitative measurements of brain iron deposition in cirrhotic patients using susceptibility mapping. Acta Radiologica 2015, 56, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Walsh, A.J.; Lebel, R.M.; Blevins, G.; Catz, I.; Lu, J.; Wilman, A.H. Validation of quantitative susceptibility mapping with Perls iron staining for subcortical gray matter. NeuroImage 2015, 105, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Juhás, M.; Sun, H.; Brown, M.R.; Mackay, M.B.; Mann, K.F.; Sommer, W.H.; Greenshaw, A.J. Deep grey matter iron accumulation in alcohol use disorder. NeuroImage 2017, 148, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Nixon, K. Mechanisms of Neurodegeneration and Regeneration in Alcoholism. Alcohol Alcoholism 2009, 44, 115–127. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Thongprayoon, C.; Qian, Q. Dysmagnesemia in Hospitalized Patients: Prevalence and Prognostic Importance. Mayo Clinic Proc. 2015, 90, 1001–1010. [Google Scholar] [CrossRef]
- Martin, K.J.; Gonzalez, E.A.; Slatopolsky, E. Clinical Consequences and Management of Hypomagnesemia. J. Amer. Soc. Nephrol. 2008, 20, 2291–2295. [Google Scholar] [CrossRef] [Green Version]
- Noronha, L.J.; Matuschak, G.M. Magnesium in critical illness: Metabolism, assessment, and treatment. Applied Physiol. Int. Care Med. 2012, 2, 71–83. [Google Scholar]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Kuo, E. Mechanism of Hypokalemia in Magnesium Deficiency. J. Amer. Soc. Nephrol. 2007, 18, 2649–2652. [Google Scholar] [CrossRef] [Green Version]
- Avoaroglu, D.; Inal, T.C.; Demir, M.; Attila, G.; Acartürk, E.; Evlice, Y.E.; Kayrin, L. Biochemical Indicators and Cardiac Function Tests in Chronic Alcohol Abusers. Croat. Med. J. 2005, 46, 233–237. [Google Scholar]
- Yanagawa, Y.; Suzuki, C.; Imamura, T. Recovery of paralysis in association with an improvement of hypomagnesemia due to alcoholism. Amer. J. Emer. Med. 2011, 29. [Google Scholar] [CrossRef] [PubMed]
- Rylander, R.; Mégevand, Y.; Lasserre, B.; Amstutz, W.; Granbom, S. Moderate alcohol consumption and urinary excretion of magnesium and calcium. Scand. J. Clin. Labo. Invest. 2001, 61, 401–405. [Google Scholar] [CrossRef]
- Ordak, M.; Maj-Zurawska, M.; Matsumoto, H.; Bujalska-Zadrozny, M.; Kieres-Salomonski, I.; Nasierowski, T.; Wojnar, M. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients. Drug Alcohol. Dep. 2017, 178, 271–276. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K.; Genuis, S.J. The Importance of Magnesium in Clinical Healthcare. Scientifica 2017, 4179326. [Google Scholar] [CrossRef]
- Moulin, S.R.; Mill, J.G.; Rosa, W.C.; Hermisdorf, S.R.; Caldeira, L.D.; Zago-Gomes, E.M. QT interval prolongation associated with low magnesium in chronic alcoholics. Drug Alcohol Dep. 2015, 155, 195–201. [Google Scholar] [CrossRef]
- Borini, P.; Terrazas, J.H.; Júnior, A.F.; Guimarães, R.C.; Borini, S.B. Female alcoholics: Electrocardiographic changes and associated metabolic and electrolytic disorders. Arquivos Brasileiros De Cardiologia 2003, 81. [Google Scholar] [CrossRef]
- Sobral-Oliveira, M.B.; Faintuch, J.; Guarita, D.R.; Oliveira, C.P.; Carrilho, F.J. Nutritional profile of asymptomatic alcoholic patients. Arquivos De Gastroenterologia 2001, 48, 112–118. [Google Scholar] [CrossRef]
- Papazachariou, I.M.; Martinez-Isla, A.; Efthimiou, E.; Williamson, R.C.; Girgis, S.I. Magnesium deficiency in patients with chronic pancreatitis identified by an intravenous loading test. Clin. Chim. Acta 2000, 302, 145–154. [Google Scholar] [CrossRef]
- Turecky, L.; Kupcova, V.; Szantova, M.; Uhlikova, E.; Viktorinova, A.; Czirfusz, A. Serum magnesium levels in patients with alcoholic and non-alcoholic fatty liver. Bratislavské lekárske listy 2006, 107, 58. [Google Scholar]
- Voma, C.; Romani, A.M. Role of Magnesium in the Regulation of Hepatic Glucose Homeostasis. Glucose Homeost. 2014, 25. [Google Scholar] [CrossRef]
- Chen, B.B.; Prasad, C.; Kobrzynski, M.; Campbell, C.; Filler, G. Seizures Related to Hypomagnesemia. Child. Neurol. Open 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Elisaf, M.; Liamis, G.; Liberopoulos, E.; Siamopoulos, K.C. Mechanisms of Hypocalcemia in Alcoholic Patients. Nephron 2001, 89, 459–460. [Google Scholar] [CrossRef]
- Bergheim, I.; Parlesak, A.; Dierks, C.; Bode, J.C.; Bode, C. Nutritional deficiencies in German middle-class male alcohol consumers: Relation to dietary intake and severity of liver disease. Eur. J. Clin. Nutr. 2003, 57, 431–438. [Google Scholar] [CrossRef]
- Halsted, C.H. Nutrition and Alcoholic Liver Disease. Semin. Liv. Dis. 2004, 24, 289–304. [Google Scholar] [CrossRef]
- Shibazaki, S.; Uchiyama, S.; Tsuda, K.; Taniuchi, N. Copper deficiency caused by excessive alcohol consumption. BMJ Case Rep. 2017. [Google Scholar] [CrossRef]
- Rahelic, D.; Kujundzic, M.; Bozikov, V. Zinc, Copper, Manganese and Magnesium in Liver Cirrhosis. Micronutr. Health Res. 2008, 227. [Google Scholar]
- Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Aigner, E.; Theurl, I.; Haufe, H.; Seifert, M.; Hohla, F.; Scharinger, L.; Datz, C. Copper Availability Contributes to Iron Perturbations in Human Nonalcoholic Fatty Liver Disease. Gastroenterology 2008, 135, 680–688. [Google Scholar] [CrossRef]
- Morrell, A.; Tallino, S.; Yu, L.; Burkhead, J.L. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life 2017, 69, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Halfdanarson, T.R.; Kumar, N.; Li, C.; Phyliky, R.L.; Hogan, W.J. Hematological manifestations of copper deficiency: A retrospective review. Eur. J. Haematol. 2008, 80, 523–531. [Google Scholar] [CrossRef]
- Ordak, M.; Bulska, E.; Jablonka-Salach, K.; Luciuk, A.; Maj-Żurawska, M.; Matsumoto, H.; Bujalska-Zadrozny, M. Effect of Disturbances of Zinc and Copper on the Physical and Mental Health Status of Patients with Alcohol Dependence. Biol. Trace Element Res. 2017, 183, 9–15. [Google Scholar] [CrossRef]
- Mital, M.; Bal, W.; Frączyk, T.; Drew, S.C. Interplay between Copper, Neprilysin, and N-Truncation of β-Amyloid. Inorg. Chem. 2018, 57, 6193–6197. [Google Scholar] [CrossRef]
- Sensi, S.L.; Granzotto, A.; Siotto, M.; Squitti, R. Copper and Zinc Dysregulation in Alzheimer’s Disease. Trends Pharmacol. Sci. 2018, 39, 1049–1063. [Google Scholar] [CrossRef]
- Słupski, J.; Cubała, W.J.; Górska, N. Role of copper in depression. Relationship with ketamine treatment. Med. Hypotheses 2018, 119, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Gregg, X.T. Copper deficiency masquerading as myelodysplastic syndrome. Blood 2002, 100, 1493–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Gross, J.B.; Ahlskog, J.E. Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology 2004, 63, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N. Copper Deficiency Myelopathy (Human Swayback). Mayo Clin. Proc. 2006, 81, 1371–1384. [Google Scholar] [CrossRef] [PubMed]
- González-Reimers, E.; Martín-González, M.C.; Alemán-Valls, M.R.; De la Vega-Prieto, M.J.; Galindo-Martín, L.; Abreu-González, P.; Santolaria-Fernández, F. Relative and Combined Effects of Chronic Alcohol Consumption and HCV Infection on Serum Zinc, Copper, and Selenium. Biol. Trace Element Res. 2009, 132, 75–84. [Google Scholar] [CrossRef]
- Durán Castellón, M.; González-Reimers, E.; López-Lirola, A.; Martín Olivera, R.; Santolaria-Fernández, F.; Galindo-Martín, L.; González-Hernández, T. Alcoholic myopathy: Lack of effect of zinc supplementation. Food Chem. Toxicol. 2005, 43, 1333–1343. [Google Scholar] [CrossRef]
- González-Pérez, J.M.; González-Reimers, E.; DeLaVega-Prieto, M.J.; Del Carmen Durán-Castellón, M.; Viña-Rodríguez, J.; Galindo-Martín, L.; Santolaria-Fernández, F. Relative and Combined Effects of Ethanol and Protein Deficiency on Bone Manganese and Copper. Biol. Trace Element Res. 2011, 147, 226–232. [Google Scholar] [CrossRef]
- Sureka, B.; Bansal, K.; Patidar, Y.; Rajesh, S.; Mukund, A.; Arora, A. Neurologic Manifestations of Chronic Liver Disease and Liver Cirrhosis. Curr. Probl. Diagn. Radiol. 2015, 44, 449–461. [Google Scholar] [CrossRef]
- Pasternak, K.; Kiełczykowska, M. Alcoholism, drug addiction and macro- and microelements in experimental and clinical studies. Alkoholizm i Narkomania 2003, 16, 25–37. [Google Scholar]
- Hartleb, M. Hepatic encephalopathy in patients with liver cirrhosis. Gastroenterol. Klin. 2013, 5, 106–122. [Google Scholar]
- Du, K.; Liu, M.; Pan, Y.; Zhong, X.; Wei, M. Association of Serum Manganese Levels with Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Bowman, A.B.; Kwakye, G.F.; Herrero Hernández, E.; Aschner, M. Role of manganese in neurodegenerative diseases. J. Trace Elements Med. Biol. 2011, 25, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Totten, M.; Zhang, Z.; Bucinca, H. Iron and manganese-related CNS toxicity: Mechanisms, diagnosis and treatment. Expert Rev. Neur. 2019. (accepted). [Google Scholar] [CrossRef]
- Butterworth, R.F. Pathophysiology of hepatic encephalopathy: A new look at ammonia. Metabolic Brain Disease 2002, 17, 221–227. [Google Scholar] [CrossRef]
- Zuccoli, G.; Siddiqui, N.; Cravo, I.; Bailey, A.; Gallucci, M.; Harper, C.G. Neuroimaging Findings in Alcohol-Related Encephalopathies. Amer. J. Roentgenol. 2010, 195, 1378–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y. Neuroimaging in Manganese-Induced Parkinsonism. Diagn. Rehabil. Parkinsons Dis. 2011. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Mancía, S.; Ríos, C.; Montes, S. Manganese accumulation in the CNS and associated pathologies. BioMetals 2011, 24, 811–825. [Google Scholar] [CrossRef]
- Jarvis, C.M.; Hayman, L.L.; Braun, L.T.; Schwertz, D.W.; Ferrans, C.E.; Piano, M.R. Cardiovascular Risk Factors and Metabolic Syndrome in Alcohol- and Nicotine-Dependent Men and Women. J. Cardiovascular Nurs. 2007, 22, 429–435. [Google Scholar] [CrossRef]
- Welzel, H.; Ende, G.; Walter, S.; Diehl, A.; Demirakca, T.; Flor, H.; Mann, K. Clinical and Neuropsychological Data in Chronic Alcoholic Patients: Correlation with MR Spectroscopy and Imaging. Alcohol. Clin. Exper. Res. 2004, 28. [Google Scholar] [CrossRef]
- Sassine, M.; Mergler, D.; Bowler, R.; Hudnell, H. Manganese accentuates adverse mental health effects associated with alcohol use disorders. Biol. Psychiat. 2002, 51, 909–921. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grochowski, C.; Blicharska, E.; Baj, J.; Mierzwińska, A.; Brzozowska, K.; Forma, A.; Maciejewski, R. Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules 2019, 24, 1361. https://doi.org/10.3390/molecules24071361
Grochowski C, Blicharska E, Baj J, Mierzwińska A, Brzozowska K, Forma A, Maciejewski R. Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules. 2019; 24(7):1361. https://doi.org/10.3390/molecules24071361
Chicago/Turabian StyleGrochowski, Cezary, Eliza Blicharska, Jacek Baj, Aleksandra Mierzwińska, Karolina Brzozowska, Alicja Forma, and Ryszard Maciejewski. 2019. "Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review" Molecules 24, no. 7: 1361. https://doi.org/10.3390/molecules24071361
APA StyleGrochowski, C., Blicharska, E., Baj, J., Mierzwińska, A., Brzozowska, K., Forma, A., & Maciejewski, R. (2019). Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules, 24(7), 1361. https://doi.org/10.3390/molecules24071361