KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO–cGMP–MAPK Signaling Pathways
Abstract
:1. Introduction
2. Results
2.1. Effect of KMUP-1 on Hypoxia-Induced Cytotoxicity
2.2. KMUP-1 Prevents DNA Fragmentation in Hypoxic Cardiomyocytes
2.3. KMUP-1 Diminishes Intracellular Calcium Concentration of Hypoxic Cardiomyocytes
2.4. KMUP-1 Pretreatment Reduces Intracellular Reactive Oxygen Species (ROS) in Hypoxic Cardiomyocytes
2.5. KMUP-1 Upregulates Plasma Nitric Oxide Level and eNOS Expression, but Downregulates iNOS Expression in Hypoxic Cardiomyocytes
2.6. KMUP-1 Increases the Expression of sGCα1 and PKG in Hypoxic Cardiomyocytes
2.7. KMUP-1 Ameliorates the Ratio of Bcl-2/Bax Expression in Hypoxia-Induced H9c2 Rat Cardiomyocytes
2.8. KMUP-1 Downregulates the Expression of ERK1/2, p38, and JNK in Hypoxic Cardiomyocytes
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Cell Culture and Hypoxic Stimulation
4.3. Determination of Cardiomyocyte Mitochondrial Viability
4.4. Morphological Assessment and Quantification of Apoptotic H9c2 Cardiomyoblast
4.5. DNA Ladder
4.6. Measurement of Intracellular and Mitochondrial Calcium Concentration
4.7. Fluorescent Measurement of Intracellular Reactive Oxygen Species (ROS)
4.8. Measurement of Nitrite Release
4.9. Immunoblot Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; De Ferranti, S.; Després, J.P.; Fullerton, H.J. Executive summary: Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 2016, 133, 447–454. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Top 10 Causes of Death. 2014. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 29 October 2018).
- Ferdinandy, P.; Schulz, R.; Baxter, G.F. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol. Rev. 2007, 59, 418–458. [Google Scholar] [CrossRef]
- Lee, Y.; Gustafsson, Å.B. Role of apoptosis in cardiovascular disease. Apoptosis 2009, 14, 536–548. [Google Scholar] [CrossRef]
- Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wideranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239. [Google Scholar] [CrossRef] [PubMed]
- Chinnaiyan, A.M.; O’Rourke, K.; Tewari, M.; Dixit, V.M. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995, 81, 505–512. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Thompson, C.B. Bcl-2 proteins: Regulators of apoptosis or of mitochondrial homeostasis? Nat. Cell Biol. 1999, 1, E209–E216. [Google Scholar] [CrossRef] [PubMed]
- Antonsson, B.; Montessuit, S.; Sanchez, B.; Martinou, J.-C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 2001, 276, 11615–11623. [Google Scholar] [CrossRef]
- Xia, P.; Liu, Y.; Cheng, Z. Signaling pathways in cardiac myocyte apoptosis. BioMed Res. Int. 2016, 2016, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Liou, S.-F.; Hsu, J.-H.; Chen, Y.-T.; Chen, I.-J.; Yeh, J.-L. KMUP-1 attenuates endothelin-1-induced cardiomyocyte hypertrophy through activation of heme oxygenase-1 and suppression of the Akt/GSK-3β, calcineurin/NFATc4 and RhoA/ROCK pathways. Molecules 2015, 20, 10435–10449. [Google Scholar] [CrossRef] [PubMed]
- Gorbe, A.; Giricz, Z.; Szunyog, A.; Csont, T.; Burley, D.S.; Baxter, G.F.; Ferdinandy, P. Role of cGMP-PKG signaling in the protection of neonatal rat cardiac myocytes subjected to simulated ischemia/reoxygenation. Basic Res. Cardiol. 2010, 105, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.R.; Hsu, J.H.; Dai, Z.K.; Wu, B.N.; Chen, I.J.; Liou, S.F.; Yeh, J.L. Activation of endothelial NO synthase by a xanthine derivative ameliorates hypoxia-induced apoptosis in endothelial progenitor cells. J. Pharm. Pharmacol. 2016, 68, 810–818. [Google Scholar] [CrossRef]
- Kuo, K.; Wu, B.; Chiu, E.; Tseng, C.; Yeh, J.; Liu, C.; Chai, C.; Chen, I. NO donor KMUP-1 improves hepatic ischemia-reperfusion and hypoxic cell injury by inhibiting oxidative stress and pro-inflammatory signaling. Int. J. Immunopathol. Pharmacol. 2013, 26, 93–106. [Google Scholar] [CrossRef]
- Wu, B.N.; Lin, R.J.; Lin, C.Y.; Shen, K.P.; Chiang, L.C.; Chen, J. A xanthine-based KMUP-1 with cyclic GMP enhancing and K+ channels opening activities in rat aortic smooth muscle. Br. J. Pharmacol. 2001, 134, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.N.; Lin, R.J.; Lo, Y.C.; Shen, K.P.; Wang, C.C.; Lin, Y.T.; Chen, I.J. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: The role of the epithelium, cyclic nucleotides and K+ channels. Br. J. Pharmacol. 2004, 142, 1105–1114. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.J.; Wu, B.N.; Lo, Y.C.; Shen, K.P.; Lin, Y.T.; Huang, C.H.; Chen, J. KMUP-1 relaxes rabbit corpus cavernosum smooth muscle in vitro and in vivo: Involvement of cyclic GMP and K+ channels. Br. J. Pharmacol. 2002, 135, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Boissy, R.E.; Trinkle, L.S.; Nordlund, J.J. Separation of pigmented and albino melanocytes and the concomitant evaluation of endogenous peroxide content using flow cytometry. Cytometry J. Int. Soc. Anal. Cytol. 1989, 10, 779–787. [Google Scholar] [CrossRef]
- Ferrandi, C.; Ballerio, R.; Gaillard, P.; Giachetti, C.; Carboni, S.; Vitte, P.A.; Gotteland, J.P.; Cirillo, R. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br. J. Pharmacol. 2004, 142, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Lejay, A.; Fang, F.; John, R.; Van, J.A.; Barr, M.; Thaveau, F.; Chakfe, N.; Geny, B.; Scholey, J.W. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J. Mol. Cell. Cardiol. 2016, 91, 11–22. [Google Scholar] [CrossRef]
- Yue, R.; Hu, H.; Yiu, K.H.; Luo, T.; Zhou, Z.; Xu, L.; Zhang, S.; Li, K.; Yu, Z. Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes. PLoS ONE 2012, 7, e50778. [Google Scholar] [CrossRef]
- Poyton, R.O.; Ball, K.A.; Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009, 20, 332–340. [Google Scholar] [CrossRef]
- Yeh, J.L.; Hsu, J.H.; Wu, P.J.; Liou, S.F.; Liu, C.P.; Chen, I.J.; Wu, B.N.; Dai, Z.K.; Wu, J.R. KMUP-1 attenuates isoprenaline-induced cardiac hypertrophy in rats through NO/cGMP/PKG and ERK1/2/calcineurin A pathways. Br. J. Pharmacol. 2010, 159, 1151–1160. [Google Scholar] [CrossRef]
- Guo, Y.; Jones, W.K.; Xuan, Y.-T.; Tang, X.-L.; Bao, W.; Wu, W.-J.; Han, H.; Laubach, V.E.; Ping, P.; Yang, Z. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc. Natl. Acad. Sci. USA 1999, 96, 11507–11512. [Google Scholar] [CrossRef]
- Loor, G.; Schumacker, P. Role of hypoxia-inducible factor in cell survival during myocardial ischemia–reperfusion. Cell Death Differ. 2008, 15, 686–690. [Google Scholar] [CrossRef]
- Lee, J.; Bae, E.H.; Ma, S.K.; Kim, S.W. Altered nitric oxide system in cardiovascular and renal diseases. Chonnam Med. J. 2016, 52, 81–90. [Google Scholar] [CrossRef]
- de Waard, M.C.; van der Velden, J.; Boontje, N.M.; Dekkers, D.H.; van Haperen, R.; Kuster, D.W.; Lamers, J.M.; de Crom, R.; Duncker, D.J. Detrimental effect of combined exercise training and eNOS overexpression on cardiac function after myocardial infarction. Am. J. Physiol.-Heart Circ. Physiol. 2009, 296, H1513–H1523. [Google Scholar] [CrossRef]
- Shen, Y.H.; Wang, X.L.; Wilcken, D.E. Nitric oxide induces and inhibits apoptosis through different pathways. FEBS Lett. 1998, 433, 125–131. [Google Scholar] [CrossRef]
- Yin, H.; Chao, L.; Chao, J. Adrenomedullin protects against myocardial apoptosis after ischemia/reperfusion through activation of Akt-GSK signaling. Hypertension 2004, 43, 109–116. [Google Scholar] [CrossRef]
- Burley, D.S.; Ferdinandy, P.; Baxter, G.F. Cyclic GMP and protein kinase-G in myocardial ischaemia-reperfusion: Opportunities and obstacles for survival signaling. Br. J. Pharmacol. 2007, 152, 855–869. [Google Scholar] [CrossRef]
- Webster, K.A. Mitochondrial membrane permeabilization and cell death during myocardial infarction: Roles of calcium and reactive oxygen species. Future Cardiol. 2012, 8, 863–884. [Google Scholar] [CrossRef]
- Wu, H.; Ye, M.; Yang, J.; Ding, J.; Yang, J.; Dong, W.; Wang, X. Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cell. Physiol. Biochem. 2015, 35, 2320–2332. [Google Scholar] [CrossRef]
- Oakes, S.A.; Scorrano, L.; Opferman, J.T.; Bassik, M.C.; Nishino, M.; Pozzan, T.; Korsmeyer, S.J. Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2005, 102, 105–110. [Google Scholar] [CrossRef]
- Ahn, H.J.; Kim, K.I.; Kim, G.; Moon, E.; Yang, S.S.; Lee, J.-S. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS ONE 2011, 6, e28154. [Google Scholar] [CrossRef]
- Yue, T.-L.; Wang, C.; Gu, J.-L.; Ma, X.-L.; Kumar, S.; Lee, J.C.; Feuerstein, G.Z.; Thomas, H.; Maleeff, B.; Ohlstein, E.H. Inhibition of extracellular signal–regulated kinase enhances ischemia/reoxygenation–induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ. Res. 2000, 86, 692–699. [Google Scholar] [CrossRef]
- Ma, X.L.; Kumar, S.; Gao, F.; Louden, C.S.; Lopez, B.L.; Christopher, T.A.; Wang, C.; Lee, J.C.; Feuerstein, G.Z.; Yue, T.-L. Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 1999, 99, 1685–1691. [Google Scholar] [CrossRef]
- Kang, Y.J.; Zhou, Z.-X.; Wang, G.-W.; Buridi, A.; Klein, J.B. Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J. Biol. Chem. 2000, 275, 13690–13698. [Google Scholar] [CrossRef]
- Hreniuk, D.; Garay, M.; Gaarde, W.; Monia, B.P.; McKay, R.A.; Cioffi, C.L. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol. Pharmacol. 2001, 59, 867–874. [Google Scholar] [CrossRef]
- Engelbrecht, A.-M.; Niesler, C.; Page, C.; Lochner, A. p38 and JNK have distinct regulatory functions on the development of apoptosis during simulated ischaemia and reperfusion in neonatal cardiomyocytes. Basic Res. Cardiol. 2004, 99, 338–350. [Google Scholar] [CrossRef]
- Dougherty, C.J.; Kubasiak, L.A.; Prentice, H.; Andreka, P.; Bishopric, N.H.; Webster, K.A. Activation of c-Jun N-terminal kinase promotes survival of cardiac myocytes after oxidative stress. Biochem. J. 2002, 362, 561–571. [Google Scholar] [CrossRef]
- Giardino, I.; Edelstein, D.; Brownlee, M. BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Investig. 1996, 97, 1422–1428. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Normoxic Control | Hypoxia + KMUP-1 | |||
---|---|---|---|---|
0 μM | 0.1 μM | 1 μM | 10 μM | |
1.84 ± 0.39 | 3.94 ± 0.07 | 4.29 ± 0.19 ** | 4.56 ± 0.14 # | 5.26 ± 0.13 ## |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-L.; Sulistyowati, E.; Hsu, J.-H.; Huang, B.-Y.; Dai, Z.-K.; Wu, B.-N.; Chao, Y.-Y.; Yeh, J.-L. KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO–cGMP–MAPK Signaling Pathways. Molecules 2019, 24, 1376. https://doi.org/10.3390/molecules24071376
Lee M-L, Sulistyowati E, Hsu J-H, Huang B-Y, Dai Z-K, Wu B-N, Chao Y-Y, Yeh J-L. KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO–cGMP–MAPK Signaling Pathways. Molecules. 2019; 24(7):1376. https://doi.org/10.3390/molecules24071376
Chicago/Turabian StyleLee, Meng-Luen, Erna Sulistyowati, Jong-Hau Hsu, Bo-Yau Huang, Zen-Kong Dai, Bin-Nan Wu, Yu-Ying Chao, and Jwu-Lai Yeh. 2019. "KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO–cGMP–MAPK Signaling Pathways" Molecules 24, no. 7: 1376. https://doi.org/10.3390/molecules24071376
APA StyleLee, M. -L., Sulistyowati, E., Hsu, J. -H., Huang, B. -Y., Dai, Z. -K., Wu, B. -N., Chao, Y. -Y., & Yeh, J. -L. (2019). KMUP-1 Ameliorates Ischemia-Induced Cardiomyocyte Apoptosis through the NO–cGMP–MAPK Signaling Pathways. Molecules, 24(7), 1376. https://doi.org/10.3390/molecules24071376