Isonitrile-Derivatized Indole as an Infrared Probe for Hydrogen-Bonding Environments
Abstract
:1. Introduction
2. Results and Discussion
2.1. FTIR Spectroscopy
2.2. Polarization-Controlled IR Pump–Probe Spectroscopy
3. Materials and Methods
3.1. Materials and Sample Preparation
3.2. Spectroscopic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ma, J.; Pazos, I.M.; Zhang, W.; Culik, R.M.; Gai, F. Site-specific infrared probes of proteins. Annu. Rev. Phys. Chem. 2015, 66, 357–377. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Cho, M. Infrared probes for studying the structure and dynamics of biomolecules. Chem. Rev. 2013, 113, 5817–5847. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, R.; Zimmermann, J.; Romesberg, F.E. Transparent window vibrational probes for the characterization of proteins with high structural and temporal resolution. Chem. Rev. 2017, 117, 1927–1969. [Google Scholar] [CrossRef]
- Lindquist, B.A.; Furse, K.E.; Corcelli, S.A. Nitrile groups as vibrational probes of biomolecular structure and dynamics: An overview. Phys. Chem. Chem. Phys. 2009, 11, 8119–8132. [Google Scholar] [CrossRef]
- Ye, S.; Zaitseva, E.; Caltabiano, G.; Schertler, G.F.; Sakmar, T.P.; Deupi, X.; Vogel, R. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 2010, 464, 1386–1389. [Google Scholar] [CrossRef]
- Taskent-Sezgin, H.; Chung, J.; Banerjee, P.S.; Nagarajan, S.; Dyer, R.B.; Carrico, I.; Raleigh, D.P. Azidohomoalanine: A conformationally sensitive IR probe of protein folding, protein structure, and electrostatics. Angew. Chem. Int. Edit. 2010, 49, 7473–7475. [Google Scholar] [CrossRef] [PubMed]
- Bandaria, J.N.; Dutta, S.; Hill, S.E.; Kohen, A.; Cheatum, C.M. Fast enzyme dyamics at the active site of formate dehydrogenase. J. Am. Chem. Soc. 2008, 130, 22. [Google Scholar] [CrossRef] [PubMed]
- Waegele, M.M.; Culik, R.M.; Gai, F. Site-specific spectroscopic reporters of the local electric field, hydration, structure, and dynamics of biomolecules. J. Phys. Chem. Lett. 2011, 2, 2598–2609. [Google Scholar] [CrossRef] [PubMed]
- Koziol, K.L.; Johnson, P.J.M.; Stucki-Buchli, B.; Waldauer, S.A.; Hamm, P. Fast infrared spectroscopy of protein dynamics: Advancing sensitivity and selectivity. Curr. Opin. Struct. Biol. 2015, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fafarman, A.T.; Webb, L.J.; Chuang, J.I.; Boxer, S.G. Site-specific conversion of cysteine thiols into thiocyanate creates an IR probe for electric fields in proteins. J. Am. Chem. Soc. 2006, 128, 13356–13357. [Google Scholar] [CrossRef]
- Getahun, Z.; Huang, C.Y.; Wang, T.; De Leon, B.; DeGrado, W.F.; Gai, F. Using nitrile-derivatized amino acids as infrared probes of local environment. J. Am. Chem. Soc. 2003, 125, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Thielges, M.C.; Axup, J.Y.; Wong, D.; Lee, H.S.; Chung, J.K.; Schultz, P.G.; Fayer, M.D. Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: A site-specific genetically encoded unnatural amino acid and an active site ligand. J. Phys. Chem. B 2011, 115, 11294–11304. [Google Scholar] [CrossRef] [PubMed]
- Gai, X.S.; Coutifaris, B.A.; Brewer, S.H.; Fenlon, E.E. A direct comparison of azide and nitrile vibrational probes. Phys. Chem. Chem. Phys. 2011, 13, 5926–5930. [Google Scholar] [CrossRef] [PubMed]
- Lipkin, J.S.; Song, R.; Fenlon, E.E.; Brewer, S.H. Modulating accidental Fermi resonance: What a difference a neutron makes. J. Phys. Chem. Lett. 2011, 2, 1672–1676. [Google Scholar] [CrossRef]
- Dutta, S.; Rock, W.; Cook, R.J.; Kohen, A.; Cheatum, C.M. Two-dimensional infrared spectroscopy of azido-nicotinamide adenine dinucleotide in water. J. Chem. Phys. 2011, 135, 08B606. [Google Scholar] [CrossRef]
- Lee, G.; Kossowska, D.; Lim, J.; Kim, S.; Han, H.; Kwak, K.; Cho, M. Cyanamide as an Infrared Reporter: Comparison of Vibrational Properties between Nitriles Bonded to N and C Atoms. J. Phys. Chem. B 2018, 122, 4035–4044. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Liu, L.; Zhang, W. The covalently bound diazo group as an infrared probe for hydrogen bonding environments. Phys. Chem. Chem. Phys. 2017, 19, 19420–19426. [Google Scholar] [CrossRef]
- Bogan, A.A.; Thorn, K.S. Anatomy of hot spots in protein interfaces1. J. Mol. Biol. 1998, 280, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-H.; Chen, C.; Jou, M.-L.; Lee, A.Y.-L.; Lin, Y.-C.; Yu, Y.-P.; Huang, W.-T.; Wu, S.-H. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005, 33, 4053–4064. [Google Scholar] [CrossRef]
- Bartlett, G.J.; Porter, C.T.; Borkakoti, N.; Thornton, J.M. Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 2002, 324, 105–121. [Google Scholar] [CrossRef]
- Xue, Y.; Davis, A.V.; Balakrishnan, G.; Stasser, J.P.; Staehlin, B.M.; Focia, P.; Spiro, T.G.; Penner-Hahn, J.E.; O’Halloran, T.V. Cu (I) recognition via cation-π and methionine interactions in CusF. Nat. Chem. Biol. 2008, 4, 107. [Google Scholar] [CrossRef]
- Talukder, P.; Chen, S.; Roy, B.; Yakovchuk, P.; Spiering, M.M.; Alam, M.P.; Madathil, M.M.; Bhattacharya, C.; Benkovic, S.J.; Hecht, S.M. Cyanotryptophans as novel fluorescent probes for studying protein conformational changes and DNA–protein interaction. Biochemistry 2015, 54, 7457–7469. [Google Scholar] [CrossRef]
- Hilaire, M.R.; Ahmed, I.A.; Lin, C.-W.; Jo, H.; DeGrado, W.F.; Gai, F. Blue fluorescent amino acid for biological spectroscopy and microscopy. Proc. Natl. Acad. Sci. USA 2017, 114, 6005–6009. [Google Scholar] [CrossRef]
- Hilaire, M.R.; Mukherjee, D.; Troxler, T.; Gai, F. Solvent dependence of cyanoindole fluorescence lifetime. Chem. Phys. Lett. 2017, 685, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, B.N.; Mukherjee, D.; Troxler, T.; Gai, F. Utility of 5-cyanotryptophan fluorescence as a sensitive probe of protein hydration. J. Phys. Chem. B 2016, 120, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Markiewicz, B.N.; Doerksen, R.S.; Smith, A.B., III; Gai, F. C [triple bond, length as m-dash] N stretching vibration of 5-cyanotryptophan as an infrared probe of protein local environment: What determines its frequency? Phys. Chem. Chem. Phys. 2016, 18, 7027–7034. [Google Scholar] [CrossRef]
- Rodgers, J.M.; Abaskharon, R.M.; Ding, B.; Chen, J.; Zhang, W.; Gai, F. Fermi resonance as a means to determine the hydrogen-bonding status of two infrared probes. Phys. Chem. Chem. Phys. 2017, 19, 16144–16150. [Google Scholar] [CrossRef]
- Markiewicz, B.N.; Lemmin, T.; Zhang, W.; Ahmed, I.A.; Jo, H.; Fiorin, G.; Troxler, T.; DeGrado, W.F.; Gai, F. Infrared and fluorescence assessment of the hydration status of the tryptophan gate in the influenza A M2 proton channel. Phys. Chem. Chem. Phys. 2016, 18, 28939–28950. [Google Scholar] [CrossRef] [PubMed]
- Maj, M.; Ahn, C.; Blasiak, B.; Kwak, K.; Han, H.; Cho, M. Isonitrile as an Ultrasensitive Infrared Reporter of Hydrogen-Bonding Structure and Dynamics. J. Phys. Chem. B 2016, 120, 10167–10180. [Google Scholar] [CrossRef]
- Maj, M.; Ahn, C.; Kossowska, D.; Park, K.; Kwak, K.; Han, H.; Cho, M. beta-Isocyanoalanine as an IR probe: Comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes. Phys. Chem. Chem. Phys. 2015, 17, 11770–11778. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, .pi.*, .alpha., and .beta., and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Dickinson, C.; Taft, R.W. Linear solvation energy relationships-solvent effects on some fluorescence probes. Chem. Phys. Lett. 1981, 77, 69–72. [Google Scholar] [CrossRef]
- Wolfshorndl, M.P.; Baskin, R.; Dhawan, I.; Londergan, C.H. Covalently bound azido groups are very specific water sensors, even in hydrogen-bonding environments. J. Phys. Chem. B 2012, 116, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 5ICI and NM5ICI are available from the authors. |
Solvent | ω0 cm−1 | ω1 cm−1 | π* | β | α |
---|---|---|---|---|---|
n-octanol | 2120.4 | 2139.3 | 0.40 | 0.81 | 0.77 |
THF | 2121.6 | - | 0.58 | 0.55 | 0 |
n-butanol | 2121.6 | 2139.2 | 0.47 | 0.88 | 0.79 |
Toluene | 2122.1 | - | 0.54 | 0.11 | 0 |
2-propanol | 2121.8 | 2137.7 | 0.48 | 0.95 | 0.76 |
n-propanol | 2122.0 | 2139.6 | 0.52 | 0.90 | 0.84 |
Ethanol | 2122.3 | 2139.0 | 0.54 | 0.77 | 0.83 |
DMSO | 2122.6 | - | 1 | 0.76 | 0 |
DMF | 2122.3 | - | 0.88 | 0.69 | 0 |
1,4-Dioxane | 2123.0 | - | 0.55 | 0.37 | 0 |
MeOH | 2123.3 | 2139.4 | 0.6 | 0.62 | 0.93 |
DCM | 2126.6 | - | 0.82 | 0.1 | 0.13 |
CCl4 | 2123.3 | 0.28 | 0 | 0 | |
acetonitrile | 2125.9 | - | 0.75 | 0.31 | 0.19 |
n-pentanol | 2121.1 | 2138.8 | 0.4 | 0.86 | 0.84 |
n-hexanol | 2120.8 | 2138.6 | 0.4 | 0.94 | 0.67 |
n-heptanol | 2120.6 | 2138.2 | 0.39 | 0.96 | 0.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, M.; Zhou, L.; Huang, X.; Wang, Y.; Zhang, W. Isonitrile-Derivatized Indole as an Infrared Probe for Hydrogen-Bonding Environments. Molecules 2019, 24, 1379. https://doi.org/10.3390/molecules24071379
You M, Zhou L, Huang X, Wang Y, Zhang W. Isonitrile-Derivatized Indole as an Infrared Probe for Hydrogen-Bonding Environments. Molecules. 2019; 24(7):1379. https://doi.org/10.3390/molecules24071379
Chicago/Turabian StyleYou, Min, Liang Zhou, Xinyue Huang, Yang Wang, and Wenkai Zhang. 2019. "Isonitrile-Derivatized Indole as an Infrared Probe for Hydrogen-Bonding Environments" Molecules 24, no. 7: 1379. https://doi.org/10.3390/molecules24071379
APA StyleYou, M., Zhou, L., Huang, X., Wang, Y., & Zhang, W. (2019). Isonitrile-Derivatized Indole as an Infrared Probe for Hydrogen-Bonding Environments. Molecules, 24(7), 1379. https://doi.org/10.3390/molecules24071379