Antioxidant Properties of Four Commonly Consumed Popular Italian Dishes
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Recipes: Identification of Standard Recipe, Sampling and Dish Preparation
3.2. Evaluation of Antioxidant Properties by Ferric Reducing Antioxidant Power (FRAP) and Total Polyphenol Content (TPC)
3.2.1. Extraction Procedure
Aqueous-Organic Extract
Residue
3.2.2. Antioxidant Assays
FRAP
Total Polyphenol Content (TPC)
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pennington, L. Food composition database for bioactive food components. J. Food Compos. Anal. 2002, 15, 419–434. [Google Scholar] [CrossRef]
- Jacobs, D.R.; Tapsell, L.C. Food, not nutrients, is the fundamental unit in nutrition. Nutr. Rev. 2007, 65, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Naviglio, D.; Romano, R.; Pizzolongo, F.; Santini, A.; De Vivo, A.; Schiavo, L.; Nota, G.; Spagna Musso, S. Rapid determination of esterified glycerol and glycerides in triglycerides fats and oils by means of periodate method after transesterification. Food Chem. 2007, 102, 399–405. [Google Scholar] [CrossRef]
- Pannico, A.; Schouten, R.E.; Basile, B.; Romano, R.; Woltering, E.J.; Cirillo, C. Non-destructive detection of flawed hazelnut kernels and lipid oxidation assessment using NIR spectroscopy. J. Food Eng. 2015, 160, 42–48. [Google Scholar] [CrossRef]
- Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of processing on the bioaccessibility of bioactive compounds—A review focusing on carotenoids, minerals, ascorbic acid, tocopherols and polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. [Google Scholar] [CrossRef]
- Romano, R.; Giordano, A.; Le Grottaglie, L.; Manzo, N.; Paduano, A.; Sacchi, R.; Santini, A. Volatile compounds in intermittent frying by gas chromatography and nuclear magnetic resonance. Eur. J. Lipid Sci. Technol. 2013, 115, 764–773. [Google Scholar] [CrossRef]
- D’Evoli, L.; Salvatore, P.; Lucarini, M.; Nicoli, S.; Aguzzi, A.; Gabrielli, P.; Lombardi-Boccia, G. Nutritional value of traditional Italian meat-based dishes: Influence of cooking methods and recipe formulation. Int. J. Food Sci. Nutr. 2009, 60, 38–49. [Google Scholar] [CrossRef]
- Marletta, L.; Camilli, E.; Turrini, A.; Scardella, P.; Spada, R.; Piombo, L.; Khokhar, S.; Finglas, P.; Carnovale, E. The nutritional composition of selected ethnic foods consumed in Italy. Nutr. Bull. 2010, 35, 350–356. [Google Scholar] [CrossRef]
- Lucarini, M.; D’Evoli, L.; Nicoli, S.; Aguzzi, A.; Gabrielli, P.; Lombardi-Boccia, G. Effect of cooking treatments on nutrient profile of dishes based on veal meat. Italian J. Food Sci. 2011, 23, 395–403. [Google Scholar]
- Ramdath, D.D.; Hilaire, D.G.; Brambilla, A.; Sharma, S. Nutritional composition of commonly consumed composite dishes in Trinidad. Int. J. Food Sci. Nutr. 2011, 62, 34–46. [Google Scholar] [CrossRef]
- Costa, H.S.; Albuquerque, T.G.; Sanches-Silva, A.; Vasilopoulou, E.; Trichopoulou, A.; D’Antuono, L.F.; Alexieva, I.; Boyko, N.; Costea, C.; Fedosova, K.; et al. New nutritional composition data on selected traditional foods consumed in Black Sea Area countries. J. Sci. Food Agric. 2013, 93, 3524–3534. [Google Scholar] [CrossRef]
- Durazzo, A.; Lisciani, S.; Camilli, E.; Gabrielli, P.; Marconi, S.; Gambelli, L.; Aguzzi, A.; Lucarini, M.; Maiani, G.; Casale, G.; et al. Nutritional composition and antioxidant properties of traditional Italian dishes. Food Chem. 2017, 218, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Camilli, E.; Marconi, S.; Lisciani, S.; Gabrielli, P.; Gambelli, L.; Aguzzi, A.; Lucarini, M.; Kiefer, J.; Marletta, L. Nutritional composition and dietary intake of composite dishes traditionally consumed in Italy. J. Food Compos. Anal. 2019, 77, 115–124. [Google Scholar] [CrossRef]
- SINU, Società Italiana di Nutrizione Umana. Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana; (IV Revisione); SICS (Società Italiana di Comunicazione Scientifica e Sanitaria): Milano, Italy, 2014. [Google Scholar]
- Finglas, P.; Roe, M.; Pinchen, H.; Astley, S. The contribution of food composition resources to nutrition science methodology. Br. Nutr. Found. Nutr. Bull. 2017, 42, 198–206. [Google Scholar] [CrossRef]
- Ribeiro, P.; de Moris, T.B.; Colugnati, F.A.; Sigulem, D.M. Food composition tables: Laboratory comparative analysis. Revista de Saude Publica 2003, 37, 216–225. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Elmadfa, I.; Meyer, A.L. Importance of food composition data to nutrition and public health. Eur. J. Clin. Nutr. 2010, 3, 4–7. [Google Scholar] [CrossRef]
- Church, S.M. The importance of food composition data in recipe analysis. Nutr. Bull. 2015, 40, 40–44. [Google Scholar] [CrossRef]
- Howie, M. The nutritional value of food: A retailer’s view on McCance and Widdowson’s The Composition of Foods Data. Br. Nutr. Found. Nutr. Bull. 2015, 40, 104–106. [Google Scholar] [CrossRef]
- Capatti, A.; Montanari, M. La cucina italiana. In Storia di una Cultura, 7th ed.; Laterza: Bari, Italy, 2006. [Google Scholar]
- EuroFIR AISBL. EuroFIR—European Food Information Resource. Available online: http://www.eurofir.org (accessed on 10 January 2019).
- Project Food Quality and Functional (QUALIFU). Available online: http://nut.entecra.it/441/qualita_alimentare_e_funzionale_qualifu.html (accessed on 10 January 2019).
- Durazzo, A.; Lucarini, M. A Current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Andrew, R.; Izzo, A.A. Principles of pharmacological research of nutraceuticals. Br. J. Pharmacol. 2017, 174, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the art of Ready-to-Use Therapeutic Food: A tool for nutraceuticals addition to foodstuff. Food Chem. 2013, 140, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Novellino, E. To Nutraceuticals and Back: Rethinking a Concept. Foods 2017, 6, 74. [Google Scholar] [CrossRef]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Novellino, E. Nutraceuticals: Shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharmacol. 2018, 84, 659–672. [Google Scholar] [CrossRef]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Pharmacol. 2018, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Daliu, P.; Santini, A.; Novellino, E. A decade of nutraceutical patents: Where are we now in 2018? Expert Opin. Ther. Patents 2018, 28, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef]
- Yeung, A.W.K.; Tzvetkov, N.T.; El-Tawil, O.S.; Bungǎu, S.G.; Abdel-Daim, M.M.; Atanasov, A.G. Antioxidants: Scientific Literature Landscape Analysis. Oxid. Med. Cell. Longev. 2019, 2019, 8278454. [Google Scholar] [CrossRef]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef]
- Durazzo, A. Extractable and Non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; pp. 1–37. [Google Scholar]
- Ebun, O.; Santosh, K. Effect of domestic cooking on the polyphenolic content and antioxidant capacity of plantain (Musa paradisiaca). World J. Dairy Food Sci. 2011, 6, 189–194. [Google Scholar]
- Pérez-Jiménez, J.; Torres, J.L. Analysis of non-extractable phenolic compounds in foods: The current state of the art. J. Agric. Food Chem. 2011, 59, 12713–12724. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Phenols, lignans and antioxidant properties of legume and sweet chestnut flours. Food Chem. 2013, 140, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Turfani, V.; Narducci, V.; Azzini, E.; Maiani, G.; Carcea, M. Nutritional characterisation and bioactive components of commercial carobs flours. Food Chem. 2014, 153, 109–113. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 2013, 26, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Camelo-Méndez, G.A.; Bello-Pérez, L.A. Antioxidant Capacity of Extractable and Non-extractable Polyphenols of Pigmented Maize. Food Biotechnol. 2014, 4, 6–13. [Google Scholar]
- Durazzo, A.; Gabrielli, P.; Manzi, P. Qualitative Study of Functional Groups and Antioxidant Properties of Soy-Based Beverages Compared to Cow Milk. Antioxidants 2015, 4, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Moreno, E.L.; Chávez-Jáuregui, R.N.; de Lurdes, P.M.; Wessel-Beaver, L. Phenolic content and antioxidant capacity in organically and conventionally grown eggplant (Solanum melongena) fruits following thermal processing. Food Sci. Technol. 2015, 35, 414–420. [Google Scholar] [CrossRef]
- Olivas-Aguirre, F.J.; González-Aguilar, G.A.; Velderrain-Rodríguez, G.R.; Torres-Moreno, H.; Robles-Zepeda, R.E.; Vázquez-Flores, A.A.; de la Rosa, L.A.; Wall-Medrano, A. Radical scavenging and anti-proliferative capacity of three freeze-dried tropical fruits. Int. J. Food Sci. Technol. 2017, 52, 1699–1709. [Google Scholar] [CrossRef]
- Peng, H.; Li, W.; Li, H.; Deng, Z.; Zhang, B. Extractable and nonextractable bound phenolic compositions and their antioxidant properties in seed coat and cotyledon of black soybean (Glycinemax (L.) Merr). J. Funct. Foods 2017, 32, 296–312. [Google Scholar] [CrossRef]
- Sanz-Pintos, N.; Pérez-Jiménez, J.; Buschmann, A.H.; Vergara-Salinas, J.R.; Pérez-Correa, J.R.; Saura-Calixto, F. Macromolecular Antioxidants and Dietary Fiber in Edible Seaweeds. J. Food Sci. 2017, 82, 289–295. [Google Scholar] [CrossRef]
- Song, Y.; Wei, X.Q.; Li, M.Y.; Duan, X.W.; Sun, Y.M.; Yang, R.L.; Su, X.D.; Huang, R.M.; Wang, H. Nutritional Composition and Antioxidant Properties of the Fruits of a Chinese Wild Passiflora foetida. Molecules 2018, 23, 459. [Google Scholar] [CrossRef] [PubMed]
- Arranz, S.; Perez-Jimenez, J.; Saura-Calixto, F. Antioxidant capacity of walnut (Juglans regia L.): Contribution of oil and defatted matter. Eur. Food Res. Technol. 2008, 227, 425–431. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Goni, I. Intake and Bioaccessibility of Total Polyphenols in a Whole Diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Saura-Calixto, F. Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: Intake in four European countries. Food Res. Int. 2015, 74, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Koehnlein, E.A.; Bracht, A.; Nishida, V.S.; Peralta, R.M. Total antioxidant capacity and phenolic content of the Brazilian diet: A real scenario. Int. J. Food Sci. Nutr. 2014, 65, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Koehnlein, E.A.; Koehnlein, É.M.; Corrêa, R.C.; Nishida, V.S.; Correa, V.G.; Bracht, A.; Peralta, R.M. Analysis of a whole diet in terms of phenolic content and antioxidant capacity: Effects of a simulated gastrointestinal digestion. Int. J. Food Sci. Nutr. 2016, 67, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Faller, A.L.K.; Fialho, E.; Liu, R.H. Cellular Antioxidant Activity of Feijoada Whole Meal Coupled with an in Vitro Digestion. J. Agric. Food. Chem. 2012, 60, 4826–4832. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.; Santo, C.N. Worldwide (poly)phenol intake: Assessment methods and identified gaps. Eur. J. Nutr. 2017, 56, 1393–1408. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Plumb, J.; Lucarini, M.; Fernandez-Lopez, G.; Camilli, E.; Turrini, A.; Finglas, P.; Marletta, L. Extractable and Non-Extractable Antioxidants at the Interface of eBASIS Structure: Database Development and Expansion; EuroFIR Food Forum: Brussels, Belgium, 2018. [Google Scholar]
- Plumb, J.; Fernandez-Lopez, G.; Durazzo, A.; Lucarini, M.; Mantur-Vierendeel, A.; Camilli, E.; Turrini, A.; Marletta, L.; Finglas, P. Compiling quality evaluated data on extractable and non-extractable antioxidants within the eBASIS database Bioavailability 2018 Conference, 10-13 September, Nowich. In Proceedings of the Bioavailability 2018, Norwich, UK, 10–13 September 2018. [Google Scholar]
- eBASIS—Bioactive Substances in Food Information System. Available online: http://ebasis.eurofir.org/Default.asp (accessed on 8 January 2019).
- Kiely, M.; Black, L.J.; Plumb, J.; Kroon, P.A.; Hollman, P.C.; Larsen, J.C.; Speijers, G.J.; Kapsokefalou, M.; Sheehan, D.; Gry, J.; et al. EuroFIR eBASIS: Application for health claims submissions and evaluations. Eur. J. Clin. Nutr. 2010, 64, S101–S107. [Google Scholar] [CrossRef] [PubMed]
- Plumb, J.; Pigat, S.; Bompola, F.; Cushen, M.; Pinchen, H.; Nørby, E.; Astley, S.; Lyons, J.; Kiely, M.; Finglas, P. eBASIS (Bioactive Substances in Food Information Systems) and bioactive intakes: Major updates of the bioactive compound composition and beneficial bio effects database and the development of a probabilistic model to assess intakes in Europe. Nutrients 2017, 9, 320. [Google Scholar] [CrossRef]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2001, 11, 340–346. [Google Scholar] [CrossRef]
- Pinelo, M.; Manzocco, L.; Nunez, M.J.; Nicoli, M.C. Interaction among phenols in food fortification: Negative synergism on antioxidant capacity. J. Agric. Food Chem. 2004, 52, 1177–1180. [Google Scholar] [CrossRef]
- Ioannou, I. Comparative study of antioxidant activity between basic and convenience foods. J. Food Res. 2012, 1, 143–156. [Google Scholar] [CrossRef]
- Amarowicz, R.; Carle, R.; Dongowski, G.; Durazzo, A.; Galensa, R.; Kammerer, D.; Maiani, G.; Piskula, M.K. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol. Nutr. Food Res. 2009, 53, S151–S183. [Google Scholar] [CrossRef]
- Durazzo, A.; Casale, G.; Melini, V.; Maiani, G.; Acquistucci, R. Total polyphenol content and antioxidant properties of Solina (Triticum aestivum L.) and derivatives thereof. J. Food Sci. 2016, 28, 221. [Google Scholar]
- Turfani, V.; Narducci, V.; Durazzo, A.; Galli, V.; Carcea, M. Technological, nutritional and functional properties of wheat bread enriched with lentil or carob flours. LWT–Food Sci. Technol. 2017, 78, 361. [Google Scholar] [CrossRef]
- Hirawan, R.; Ser, W.Y.; Arntfield, S.D.; Beta, T. Antioxidant properties of commercial, regular- and whole- wheat spaghetti. Food Chem. 2009, 119, 258–264. [Google Scholar] [CrossRef]
- Durazzo, A.; Turfani, V.; Azzini, E.; Maiani, G.; Carcea, M. Antioxidant properties of experimental pastas made with different wholegrain cereals. J. Food Res. 2014, 3. [Google Scholar] [CrossRef]
- Sant’Anna, V.; Christiano, F.D.P.; Marczak, L.D.F.; Tessaro, I.C.; Thys, R.C.S. The effect of the incorporation of grape marc powder in fettuccini pasta properties. LWT-Food Sci. Technol. 2014, 58, 497–501. [Google Scholar] [CrossRef] [Green Version]
- Gull, A.; Prasad, K.; Kumar, P. Nutritional, antioxidant, microstructural and pasting properties of functional pasta. J. Saudi Soc. Agric. Sci. 2018, 17, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Ivanišováeva, I.; Košec, M.; Brindza, J.; Grygorieva, O.; Tokár, M. Green Barley as an Ingredient in Pasta: Antioxidant Activity and Sensory Characteristics Evaluation. Contemp. Agric. 2018, 67, 81–86. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Ribotta, P.D.; Leóna, A.E.; Bustosa, M.C. Gluten-free sorghum pasta: Starch digestibility and antioxidant capacity compared with commercial products. J. Sci. Food Agric. 2019, 99, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Kuhnen, S.; Moacyr, J.R.; Mayer, J.K.; Navarro, B.B.; Trevisan, R.; Honorato, L.A.; Maraschin, M.; Pinheiro Machado Filho, L.C. Phenolic content and ferric reducing—Antioxidant power of cow’s milk produced in different pasture-based production systems in southern Brazil. J. Food Sci. Agric. 2014, 94, 3110–3117. [Google Scholar] [CrossRef]
- Manzi, P.; Durazzo, A. Antioxidant properties of industrial heat-treated milk. J. Food Measur. Charact. 2017, 11, 1690–1698. [Google Scholar] [CrossRef]
- Mattera, M.; Durazzo, A.; Nicoli, S.; Di Costanzo, M.G.; Manzi, P. Chemical, nutritional, physical and antioxidant properties of Pecorino d’abruzzo cheese. Ital. J. Food Sci. 2016, 28, 579–597. [Google Scholar]
- Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Sahin, S. Comparison of antioxidant capacity of cow and ewe milk kefirs. J. Dairy Sci. 2018, 101, 3788–3798. [Google Scholar] [CrossRef]
- Calligaris, S.; Manzocco, L.; Anese, M.; Nicoli, M.C. Effect of heat-treatment on the antioxidant and and pro-oxidant activity of milk. Int. Dairy J. 2004, 14, 421–427. [Google Scholar] [CrossRef]
- Zulueta, A.; Maurizi, A.; Frigola, A.; Esteve, M.J.; Coli, R.; Burini, G. Antioxidant capacity of cow milk, whey and deproteinized milk. Int. Dairy J. 2009, 19, 380–385. [Google Scholar] [CrossRef]
- Cortés Yáñez, D.A.; Gagneten, M.; Leiva, G.E.; Male, L.S. Antioxidant activity developed at the different stages of Maillard reaction with milk proteins. LWT 2018, 89, 344–349. [Google Scholar] [CrossRef]
- Bars-Cortina, D.; Macià, A.; Iglesias, I.; Romero, M.P.; Motilva, M.J. Phytochemical profiles of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. J. Agric. Food Chem. 2017, 65, 1684–1696. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Singh, S.; Saha, S.; Sharma, V.K.; Verma, M.K.; Sharma, S.K. Nutritional characterization of apple as a function of genotype. J. Food Sci. Technol. 2018, 55, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Phenol-Explorer—Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/ (accessed on 15 January 2019).
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C.; Turrini, A.; INRAN-SCAI 2005-06 Study Group. The Italian National Food Consumption Survey INRAN-SCAI 2005-06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [PubMed]
- Finglas, P.M.; Berry, R.; Astley, S. Assessing and improving the quality of food composition databases for nutrition and health applications in Europe: The contribution of EuroFIR. Adv. Nutr. 2014, 5, 608–614. [Google Scholar] [CrossRef]
- Durazzo, A.; Kiefer, J.; Lucarini, M.; Marconi, S.; Lisciani, S.; Camilli, E.; Gambelli, L.; Gabrielli, P.; Aguzzi, A.; Finotti, E.; et al. An innovative and integrated food research approach: Spectroscopy applications to milk and a case study of a milk-based dishes. Braz. J. Anal. Chem. 2018, 5, 12–27. [Google Scholar] [CrossRef]
- Durazzo, A.; Kiefer, J.; Lucarini, M.; Camilli, C.; Marconi, S.; Gabrielli, P.; Aguzzi, A.; Gambelli, L.; Lisciani, S.; Marletta, L. Qualitative Analysis of Traditional Italian Dishes: FTIR Approach. Sustainability 2018, 10, 4112. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoglu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoglu, E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef]
- Apak, A.; Capanoglu, E.; Shahidi, F. Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications; Wiley: New York, NY, USA, 2018; ISBN 978-1-119-13535-7. [Google Scholar]
- Leopoldini, M.; Russo, N.; Toscano, M. The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chem. 2011, 125, 288–306. [Google Scholar] [CrossRef]
- Schlesier, K.; Harwat, M.; Bohm, V.; Bitsch, R. Assessment of antioxidant activity by using different in vitro methods. Free Radic. Res. 2002, 36, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’: The assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Nascimento-Souza, M.A.; Paiva, P.G.; Martino, H.S.D.; Ribeiro, A.Q. Dietary total antioxidant capacity as a tool in health outcomes in middle-aged and older adults: A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 58, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Parohan, M.; Anjom-Shoae, J.; Nasiri, M.; Khodadost, M.; Khatibi, S.R.; Sadeghi, O. Dietary total antioxidant capacity and mortality from all causes, cardiovascular disease and cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
FRAP (µmol/g d.m.) | TPC (mg/100 g d.m.) | |||
---|---|---|---|---|
Aqueous-Organic Extract | Residue | Aqueous-Organic Extract | Residue | |
Pasta alla amatriciana | 4.01 ± 0.67 b | 68.64 ± 4.43 c | 60.87 ± 5.48 c | 1447.59 ± 70.33 c |
Pasta alla carbonara | 2.62 ± 0.53 a | 73.83 ± 3.52 d | 36.50 ± 6.31 a | 1747.35 ± 72.91 d |
Besciamella | 2.47 ± 0.17 a | 52.98 ± 1.22 b | 51.90 ± 3.38 b | 1173.44 ± 73.07 b |
Torta di mele | 10.72 ± 0.80 c | 18.24 ± 5.09 a | 64.28 ± 2.39 c | 425.84 ± 63.86 a |
Italian Dishes | Aqueous-Organic Extract | Residue |
---|---|---|
Sauces | ||
Besciamella | 4 | 96 |
First Courses | ||
Spaghetti alle vongole * | 6 | 94 |
Pasta alla amatriciana | 6 | 94 |
Pasta alla carbonara | 3 | 97 |
One Dish Meals | ||
Pomodori al riso * | 15 | 85 |
Gâteau di patate * | 11 | 89 |
Side Courses | ||
Carciofi alla romana * | 58 | 42 |
Desserts | ||
Pan di Spagna * | 5 | 95 |
Torta di mele | 37 | 63 |
Original Name | Food Name | Ingredients (g/100 g) | Cooking | Timing (min.) |
---|---|---|---|---|
Pasta alla amatriciana | Amatriciana pasta | Short pasta (37.5), tomato pulp (37.5), Amatrice cheek lard diced (16), Amatrice Pecorino cheese PAT (hard cheese from sheep) (7.5), extra virgin olive oil (1.1), salt (0.3), chili pepper (0.1). | Boiling, pan-frying, and simmering | 25 |
Pasta alla carbonara | Carbonara pasta | Short pasta (47.3), bacon cubes (20.3), Roman Pecorino cheese PDO (hard cheese from sheep) (13.6), eggs (16.6), extra virgin olive oil (1.4), salt (0.4), black pepper (0.4). | Boiling and pan-frying | 13 |
Besciamella | Béchamel sauce | Milk (83), butter (8), flour (8), salt (0.5). | Simmering gently | 33 |
Torta di mele | Apple Pie | Apples (37.7), sugar (15), wheat flour (18), butter (9.3), eggs (9.2), whole milk (7.5), baking powder (1), vanilla (0.03), grated lemon peel (0.2), lemon juice (2.4). | Baking | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durazzo, A.; Lucarini, M.; Santini, A.; Camilli, E.; Gabrielli, P.; Marconi, S.; Lisciani, S.; Aguzzi, A.; Gambelli, L.; Novellino, E.; et al. Antioxidant Properties of Four Commonly Consumed Popular Italian Dishes. Molecules 2019, 24, 1543. https://doi.org/10.3390/molecules24081543
Durazzo A, Lucarini M, Santini A, Camilli E, Gabrielli P, Marconi S, Lisciani S, Aguzzi A, Gambelli L, Novellino E, et al. Antioxidant Properties of Four Commonly Consumed Popular Italian Dishes. Molecules. 2019; 24(8):1543. https://doi.org/10.3390/molecules24081543
Chicago/Turabian StyleDurazzo, Alessandra, Massimo Lucarini, Antonello Santini, Emanuela Camilli, Paolo Gabrielli, Stefania Marconi, Silvia Lisciani, Altero Aguzzi, Loretta Gambelli, Ettore Novellino, and et al. 2019. "Antioxidant Properties of Four Commonly Consumed Popular Italian Dishes" Molecules 24, no. 8: 1543. https://doi.org/10.3390/molecules24081543
APA StyleDurazzo, A., Lucarini, M., Santini, A., Camilli, E., Gabrielli, P., Marconi, S., Lisciani, S., Aguzzi, A., Gambelli, L., Novellino, E., & Marletta, L. (2019). Antioxidant Properties of Four Commonly Consumed Popular Italian Dishes. Molecules, 24(8), 1543. https://doi.org/10.3390/molecules24081543