Comparison of Volatile Oil between the Fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen Based on GC-MS and Chemometric Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fingerprints of FAL and FALX.
2.2. HCA
2.3. PCA
2.4. PLS-DA
3. Methods
3.1. Plant Materials
3.2. Solvents and Chemicals
3.3. Steam Distillation for Volatile Oil
3.4. GC-MS Analysis
3.5. Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Li, G.; Li, X.L.; Tang, D.Y.; Li, H.T.; Wang, Y.Q.; Li, Y.H. Quality of commercial Amomum villosum. Zhong Guo Zhongyao Zazhi 2016, 41, 1608–1616. [Google Scholar]
- Cheng, C.G.; Ruan, Y.M.; Li, B.L. Studied on the identification of Fructus amomi from its confusable varieties by fourier transform infrared spectroscopy. Guang Pu Xue Yu Guang Pu Fen Xi 2004, 24, 1355–1358. [Google Scholar] [PubMed]
- Pan, H.X.; Huang, F.; Wang, P.X.; Zhou, L.; Cao, L.Y.; Liang, R.Y. Identification of Amomum villosum, Amomum villosum var. xanthioides and Amomum longiligulare on ITS-1 sequence. Zhong Yao Cai 2001, 24, 481–483. [Google Scholar] [PubMed]
- Zhang, S.T.; Wang, Z.Y.; Wang, T.S.; Li, M.X.; Lin, J.M. Composition and antimicrobial activities of Essential oil of Fructus amomi. Nat. Prod. Res. Del. 2011, 23, 464–472. [Google Scholar]
- Lu, S.; Zhang, T.; Gu, W.; Yang, X.; Lu, J.; Zhao, R.; Yu, J. Volatile Oil of Amomum villosum inhibits nonalcoholic fatty liver disease via the gut-Liver Axis. Biomed. Res. Int. 2018, 2018, 3589874. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.S.; Xiao, F.; Zhang, Z.D.; Li, X.G.; Xu, Z.X. Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from Amomum villosum. Zhong Yao Cai 2005, 28, 505–507. [Google Scholar] [PubMed]
- Wu, X.S.; Li, X.G.; Xiao, F.; Zhang, Z.D.; Xu, Z.X.; Wang, H. Studies on the analgesic and anti-inflammatory effect of bornyl acetate in volatile oil from Amomum villosum. Zhong Yao Cai 2004, 27, 438–439. [Google Scholar] [PubMed]
- Chen, Z.; Ni, W.; Yang, C.; Zhang, T.; Lu, S.; Zhao, R.; Mao, X.; Yu, J. Therapeutic Effect of Amomum villosum on inflammatory bowel disease in Rats. Front Pharmacol. 2018, 9, 639. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, S.H.; Bi, Q.; Liang, L.; Wang, Y.F.; Yang, X.X.; Gu, W.; Yu, J. Volatile Oil from Amomi Fructus attenuates 5-Fluorouracil-induced intestinal mucositis. Front Pharmacol. 2018, 8, 786. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Guo, S.S.; Cao, J.Q.; Pang, X.; Geng, Z.F.; Wang, Y.; Zhang, Z.; Du, S.S. Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int. J. Food Prop. 2018, 21, 2265–2275. [Google Scholar] [CrossRef]
- Yu, G.W.; Cheng, Q.; Nie, J.; Wang, X.J.; Wang, P.; Li, Z.G.; Lee, M.R. Microwave hydrodistillation based on deep eutectic solvent for extraction and analysis of essential oil from three Amomum Species using Gas Chromatography-Mass Spectrometry. Chromatographia 2018, 81, 657–667. [Google Scholar] [CrossRef]
- Xue, X.; Yang, D.P.; Wang, D.M.; Xu, X.J.; Zhu, L.P.; Zhao, Z.M. Solidification of floating organic drop liquid-phase microextraction cell fishing with gas chromatography-mass spectrometry for screening bioactive components from Amomum villosum Lour. Biomed. Chromat. 2015, 29, 626–632. [Google Scholar] [CrossRef]
- Da, J.; Wu, W.Y.; Hou, J.J.; Long, H.L.; Yao, S.; Yang, Z.; Cai, L.Y.; Yang, M.; Jiang, B.H.; Liu, X.; et al. Comparison of two official Chinese pharmacopoeia species of Ganoderma based on chemical research with multiple technologies and chemometrics analysis. J. Chromatogr. A 2012, 1222, 59–70. [Google Scholar] [CrossRef]
- Chen, M.L.; Chang, W.Q.; Zhou, J.L.; Yin, Y.H.; Xia, W.R.; Liu, J.Q.; Liu, L.F.; Xin, G.Z. Comparison of three officinal species of Callicarpa based on a biochemome profiling strategy with UHPLC-IT-MS and chemometrics analysis. J. Pharm. Biomed. Anal. 2017, 145, 666–674. [Google Scholar] [CrossRef]
- Li, P.; Zeng, S.L.; Duan, L.; Ma, X.D.; Dou, L.L.; Wang, L.J.; Li, P.; Bi, Z.M.; Liu, E.H. Comparison of Aurantii Fructus Immaturus and Aurantii Fructus based on multiple chromatographic analysis and chemometrics methods. J. Chromatogr. A 2016, 1469, 96–107. [Google Scholar] [CrossRef]
- Guo, L.; Duan, L.; Liu, K.; Liu, E.H.; Li, P. Chemical comparison of Tripterygium wilfordii and Tripterygium hypoglaucum based on quantitative analysis and chemometrics methods. J. Pharm. Biomed. Anal. 2014, 95, 220–228. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, Z.; Liu, C.; Wu, M.; Su, H.; Ma, X.; Zang, Y.; Wang, J.; Zhao, Y.; Xiao, X. Spectrum-effect relationships between chemical fingerprints and antibacterial effects of Lonicerae Japonicae Flos and Lonicerae Flos base on UPLC and microcalorimetry. Front Pharmacol. 2016, 7, 12. [Google Scholar] [CrossRef]
- Xing, J.; Sun, H.M.; Li, Z.Y.; Qin, X.M. Comparison of volatile components between raw and vinegar baked Radix Bupleuri by GC-MS based metabolic fingerprinting approach. Evid.-Based Compl. Alt. Med. 2015, 2015, 653791. [Google Scholar] [CrossRef]
- Wei, G.; Yin, X.; He, J.X. Construction and Application of “Digital” Information of GC-MS Characteristic Fingerprint of Amomum villosum. Zhong Cheng Yao 2008, 30, 1256–1260. [Google Scholar]
- Yang, L.; Liu, J.; Li, Y.; Qi, G. Bornyl acetate suppresses ox-LDL-induced attachment of THP-1 monocytes to endothelial cells. Biomed. Pharmacother. 2018, 103, 234–239. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, R.; Chen, H.; Jia, P.; Bao, L.; Tang, H. Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11. IUBMB Life 2014, 66, 854–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.; Sun, G.; Yuan, X.; Hou, J.; Wu, Q.; Soromou, L.W.; Feng, H. Inhibition of lung inflammatory responses by bornyl acetate is correlated with regulation of myeloperoxidase activity. J. Surg. Res. 2014, 186, 436–445. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.X. Synergistic enhancement of the antitumor activity of 5-fluorouracil by bornyl acetate in SGC-7901 human gastric cancer cells and the determination of the underlying mechanism of action. J. BUON. 2016, 21, 108–117. [Google Scholar] [PubMed]
- Kim, S.H.; Lee, S.Y.; Hong, C.Y.; Gwak, K.S.; Park, M.J.; Smith, D.; Choi, I.G. Whitening and antioxidant activities of bornyl acetate and nezukol fractionated from Cryptomeria japonica essential oil. Int. J. Cosmet Sci. 2013, 35, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, A.; Shi, W.; Geng, M.; Zhong, X.; Zhao, Y. Quercetin and bornyl acetate regulate T-Lymphocyte subsets and INF-γ/IL-4 ratio in utero in pregnant mice. Evid.-Based Compl. Alt. Med. 2011, 2011, 745262. [Google Scholar]
- Laude, E.A.; Morice, A.H.; Grattan, T.J. The antitussive effects of menthol, camphor and cineole in conscious guinea-pigs. Pulm. Pharmacol. 1994, 7, 179–184. [Google Scholar] [CrossRef]
- Cherneva, E.; Pavlovic, V.; Smelcerovic, A.; Yancheva, D. The effect of camphor and borneol on rat thymocyte viability and oxidative stress. Molecules 2012, 17, 10258–10266. [Google Scholar] [CrossRef]
- Manoharan, R.K.; Lee, J.H.; Lee, J. Antibiofilm and antihyphal activities of Cedar Leaf Essential Oil, Camphor, and Fenchone Derivatives against Candida albicans. Front Microbiol. 2017, 8, 1476. [Google Scholar] [CrossRef]
- Tran, T.A.; Ho, M.T.; Song, Y.W.; Cho, M.; Cho, S.K. Camphor induces proliferative and anti-senescence activities in human primary dermal fibroblasts and inhibits UV-induced wrinkle formation in mouse Skin. Phytother. Res. 2015, 29, 1917–1925. [Google Scholar] [CrossRef]
- Vaghardoost, R.; Mousavi Majd, S.G.; Tebyanian, H.; Babavalian, H.; Malaei, L.; Niazi, M.; Javdani, A. The healing effect of sesame oil, camphor and honey on second degree burn wounds in rat. World J. Plast Surg. 2018, 7, 67–71. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
No. | Retention Time | Molecular Weight | Component | Molecular Formula | RI | RI′ | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | S16 | S17 | S18 | S19 | S20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.487 | 136.2 | α-Pinene | C10H16 | 917 | 931 | 1.92 | 1.65 | 0.72 | 1.63 | 1.98 | 1.86 | 1.65 | 1.56 | 1.49 | 1.69 | 1.86 | 0.84 | 1.89 | 0.66 | 1.5 | 0.91 | 1.18 | 1.12 | 1.19 | 1.79 |
2 | 4.810 | 136.2 | Camphene | C10H16 | 935 | 946 | 7.92 | 6.84 | 4.80 | 7.33 | 7.98 | 7.64 | 5.72 | 7.25 | 7.67 | 8.34 | 8.26 | 4.38 | 7.80 | 3.17 | 6.38 | 5.03 | 5.63 | 5.51 | 5.62 | 7.01 |
3 | 5.681 | 136.2 | β-Myrcene | C10H16 | 990 | 988 | 3.25 | 2.54 | 2.65 | 2.49 | 3.34 | 2.88 | 2.62 | 3.38 | 3.33 | 4.97 | 6.07 | 4.13 | 5.37 | 4.42 | 4.90 | 3.89 | 5.6 | 4.85 | 4.82 | 4.35 |
4 | 6.022 | 136.2 | α-Phellandrene | C10H16 | 1006 | 1003 | 0.35 | 0.31 | 0.29 | 0.29 | 0.31 | 0.29 | 0.31 | 0.39 | 0.32 | 0.29 | 0.29 | 0.21 | 0.30 | 0.23 | 0.29 | 0.23 | 0.28 | 0.23 | 0.27 | 0.26 |
5 | 6.663 | 136.2 | d-limonene | C10H16 | 1030 | 1033 | 7.96 | 6.87 | 7.02 | 6.70 | 7.98 | 7.24 | 7.25 | 7.76 | 8.31 | 10.72 | 11.35 | 9.12 | 11.17 | 9.75 | 9.96 | 9.06 | 9.61 | 9.75 | 10.74 | 8.10 |
6 | 7.439 | 136.2 | Terpinolene | C10H16 | 1075 | 1078 | 0.28 | 0.26 | 0.25 | 0.25 | 0.24 | 0.26 | 0.27 | 0.28 | 0.23 | 0.21 | 0.19 | 0.21 | 0.23 | 0.23 | 0.22 | 0.21 | 0.19 | 0.19 | 0.21 | 0.18 |
7 | 8.610 | 154.1 | Linalool | C10H18O | 1103 | 1102 | 0.38 | 0.56 | 0.31 | 0.51 | 0.79 | 0.48 | 0.85 | 0.25 | 0.46 | 2.49 | 2.11 | 3.62 | 2.87 | 3.51 | 2.45 | 2.42 | 2.08 | 2.55 | 3.28 | 1.76 |
8 | 10.069 | 152.2 | Camphor | C10H16O | 1148 | 1141 | 18.65 | 25.68 | 16.84 | 25.95 | 28.90 | 22.29 | 23.82 | 22.7 | 20.46 | 32.97 | 36.08 | 38.28 | 38.35 | 37.88 | 34.16 | 29.07 | 33.02 | 38.14 | 34.73 | 44.76 |
9 | 10.651 | 154.2 | Borneol | C10H18O | 1169 | 1168 | 1.98 | 3.80 | 3.12 | 3.80 | 2.87 | 1.89 | 4.66 | 2.37 | 2.41 | 6.29 | 7.15 | 5.24 | 3.79 | 5.58 | 4.94 | 6.25 | 6.35 | 5.27 | 6.61 | 8.09 |
10 | 11.433 | 154.2 | α-Terpineol | C10H18O | 1194 | 1189 | 0.29 | 0.26 | 0.26 | 0.24 | 0.32 | 0.36 | 0.34 | 0.30 | 0.27 | 0.44 | 0.31 | 0.55 | 0.48 | 0.57 | 0.39 | 0.53 | 0.42 | 0.45 | 0.55 | 0.37 |
11 | 14.692 | 196 | Bornyl acetate | C10H20O2 | 1288 | 1287 | 51.68 | 47.15 | 60.20 | 46.83 | 41.32 | 49.07 | 47.02 | 47.81 | 51.46 | 25.31 | 20.11 | 26.52 | 22.49 | 24.87 | 27.95 | 31.64 | 25.75 | 25.21 | 23.89 | 15.85 |
12 | 22.956 | 222.2 | α-Cadinol | C15H26O | 1666 | 1652 | 0.29 | 0.18 | 0.37 | 0.16 | 0.33 | 0.16 | 0.22 | 0.36 | 0.37 | 1.19 | 1.57 | 1.39 | 0.80 | 1.52 | 1.10 | 1.31 | 1.79 | 1.48 | 1.32 | 1.04 |
13 | 23.609 | 220.2 | α-Santalol | C15H24O | 1707 | 1705 | 0.31 | 0.21 | 0.34 | 0.16 | 0.24 | 0.27 | 0.26 | 0.34 | 0.34 | 0.52 | 0.43 | 0.66 | 0.49 | 0.87 | 0.58 | 0.87 | 0.46 | 0.51 | 0.77 | 0.41 |
Total percentages of common compounds | 95.26 | 96.31 | 97.17 | 96.34 | 96.6 | 94.69 | 94.99 | 94.75 | 97.12 | 95.43 | 95.78 | 95.15 | 96.03 | 93.26 | 94.82 | 91.42 | 92.36 | 95.26 | 94 | 93.97 | ||||||
V (mL) | 0.96 | 1.02 | 0.87 | 0.78 | 0.99 | 0.75 | 0.9 | 0.96 | 0.72 | 0.85 | 0.75 | 0.55 | 0.45 | 0.6 | 0.7 | 0.75 | 0.8 | 0.65 | 0.65 | 0.8 | ||||||
Oil yield (%) | 3.2 | 3.4 | 2.9 | 2.6 | 3.3 | 2.5 | 3.0 | 3.2 | 2.4 | 1.7 | 1.5 | 1.1 | 0.9 | 1.2 | 1.4 | 1.5 | 1.6 | 1.3 | 1.3 | 1.6 | ||||||
Others | 4.74 | 3.69 | 2.83 | 3.66 | 3.4 | 5.31 | 5.01 | 5.25 | 2.88 | 4.57 | 4.22 | 4.85 | 3.97 | 6.74 | 5.18 | 8.58 | 7.64 | 4.74 | 6 | 6.03 | ||||||
Number of total peaks | 30 | 27 | 26 | 27 | 24 | 27 | 31 | 36 | 21 | 27 | 27 | 25 | 25 | 31 | 31 | 40 | 38 | 25 | 33 | 42 | ||||||
Number of identified peaks | 28 | 27 | 25 | 26 | 24 | 27 | 29 | 34 | 20 | 27 | 26 | 25 | 24 | 29 | 27 | 38 | 35 | 25 | 32 | 38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, H.; Wang, J.; Chen, L.; Li, S.; Dai, C. Comparison of Volatile Oil between the Fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen Based on GC-MS and Chemometric Techniques. Molecules 2019, 24, 1663. https://doi.org/10.3390/molecules24091663
Ao H, Wang J, Chen L, Li S, Dai C. Comparison of Volatile Oil between the Fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen Based on GC-MS and Chemometric Techniques. Molecules. 2019; 24(9):1663. https://doi.org/10.3390/molecules24091663
Chicago/Turabian StyleAo, Hui, Jing Wang, Lu Chen, Shengmao Li, and Chunmei Dai. 2019. "Comparison of Volatile Oil between the Fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen Based on GC-MS and Chemometric Techniques" Molecules 24, no. 9: 1663. https://doi.org/10.3390/molecules24091663
APA StyleAo, H., Wang, J., Chen, L., Li, S., & Dai, C. (2019). Comparison of Volatile Oil between the Fruits of Amomum villosum Lour. and Amomum villosum Lour. var. xanthioides T. L. Wu et Senjen Based on GC-MS and Chemometric Techniques. Molecules, 24(9), 1663. https://doi.org/10.3390/molecules24091663