Rapid Discovery of Illuminating Peptides for Instant Detection of Opioids in Blood and Body Fluids
Abstract
:1. Introduction
2. Results
2.1. Selection of the Polymer Beads for Construction of the OBOC Illuminating Peptide Libraries
2.2. Design and Synthesis of the CEMG
2.3. Design and Synthesis of the OBOC Combinatorial Peptide Libraries
2.4. High-Throughput Screening of the OBOC Illuminating Peptide Library Beads
2.5. Preparation of the Sensor Chip
3. Discussion
4. Materials and Methods
4.1. General Experiment Procedures
4.2. Synthesis of the CEMG
4.3. Synthesis of the OBOC Libraries
4.4. High-Throughput Screening of the Immobilized OBOC Illuminating Peptide Libraries
4.5. Resynthesis of the Azido-Illuminating Peptides in Soluble Form
4.6. Preparation of Sensor-Chip and Testing for Morphine-Binding
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rudd, R.A.; Aleshire, N.; Zibbell, J.E.; Gladden, R.M. Increases in Drug and Opioid Overdose Deaths—United States, 2000–2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 64, 1378–1382. [Google Scholar] [CrossRef] [PubMed]
- Paulozzi, L.J. Vital Signs: Overdoses of Prescription Opioid Pain Relievers—United States, 1999–2008. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1487–1492. [Google Scholar]
- Overdose Death Rates. Available online: https://www.drugabuse.gov/related-topics/trends-statistics/overdose-death-rates (accessed on 30 January 2019).
- Rana, S.; Garg, R.K.; Singla, A. Rapid analysis of urinary opiates using fast gas chromatography–mass spectrometry and hydrogen as a carrier gas. Egypt. J. Forensic Sci. 2014, 4, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Strayer, K.E.; Antonides, H.M.; Juhascik, M.P.; Daniulaityte, R.; Sizemore, I.E. LC-MS/MS-Based Method for the Multiplex Detection of 24 Fentanyl Analogues and Metabolites in Whole Blood at Sub ng mL−1 Concentrations. ACS Omega 2018, 3, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Sofalvi, S.; Schueler, H.E.; Lavins, E.S.; Kaspar, C.K.; Brooker, I.T.; Mazzola, C.D.; Dolinak, D.; Gilson, T.P.; Perch, S. An LC-MS-MS Method for the Analysis of Carfentanil, 3-Methylfentanyl, 2-Furanyl Fentanyl, Acetyl Fentanyl, Fentanyl and Norfentanyl in Postmortem and Impaired-Driving Cases. J. Anal. Toxicol. 2017, 41, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Neerman, M.F. Drugs of Abuse: Analyses and Ingested Agents That Can Induce Interference or Cross-Reactivity. Lab. Med. 2006, 37, 358–361. [Google Scholar] [CrossRef] [Green Version]
- Thevis, M.; Opfermann, G.; Schänzer, W. Urinary Concentrations of Morphine and Codeine after Consumption of Poppy Seeds. J. Anal. Toxicol. 2003, 27, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Marchei, E.; Pacifici, R.; Mannocchi, G.; Marinelli, E.; Busardò, F.P.; Pichini, S. New synthetic opioids in biological and non-biological matrices: A review of current analytical methods. TrAC Trends Anal. Chem. 2018, 102, 1–15. [Google Scholar] [CrossRef]
- Chen, B.-G.; Wang, S.-M.; Liu, R.H. GC-MS analysis of multiply derivatized opioids in urine. J. Mass Spectrom. 2007, 42, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; Horowitz, G.; Jacoby, H.; Eliopoulos, G.M. Quinolones and false-positive urine screening for opiates by immunoassay technology. JAMA 2001, 286, 3115–3119. [Google Scholar] [CrossRef]
- Keary, C.J.; Wang, Y.; Moran, J.R.; Zayas, L.V.; Stern, T.A. Toxicologic Testing for Opiates: Understanding False-Positive and False-Negative Test Results. Prim. Care Companion CNS Disord. 2012, 14, PCC.12f01371. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.S.; Salmon, S.E.; Hersh, E.M.; Hruby, V.J.; Kazmierski, W.M.; Knapp, R.J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991, 354, 82–84. [Google Scholar] [CrossRef]
- Haidekker, M.A.; Theodorakis, E.A. Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 2010, 4, 11. [Google Scholar] [CrossRef]
- Lacowiks, J.R. Probe Design and Chemical Sensing. In Topics in Fluorescence Spectroscopy; Springer: New York, NY, USA, 1994; ISBN 978-0-306-44784-6. [Google Scholar]
- Rotkiewicz, K.; Grellmann, K.H.; Grabowski, Z.R. Reinterpretation of the anomalous fluorescense of p-n,n-dimethylamino-benzonitrile. Chem. Phys. Lett. 1973, 19, 315–318. [Google Scholar] [CrossRef]
- Li, X.; Gao, X.; Shi, W.; Ma, H. Design Strategies for Water-Soluble Small Molecular Chromogenic and Fluorogenic Probes. Chem. Rev. 2014, 114, 590–659. [Google Scholar] [CrossRef]
- Grimm, J.B.; Heckman, L.M.; Lavis, L.D. Chapter One—The Chemistry of Small-Molecule Fluorogenic Probes. Fluorescence-Based Biosensors. In Progress in Molecular Biology and Translational Science; Morris, M.C., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 113, pp. 1–34. [Google Scholar]
- Karpenko, I.A.; Kreder, R.; Valencia, C.; Villa, P.; Mendre, C.; Mouillac, B.; Mély, Y.; Hibert, M.; Bonnet, D.; Klymchenko, A.S. Red Fluorescent Turn-On Ligands for Imaging and Quantifying G Protein-Coupled Receptors in Living Cells. ChemBioChem 2014, 15, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Karpenko, I.A.; Collot, M.; Richert, L.; Valencia, C.; Villa, P.; Mély, Y.; Hibert, M.; Bonnet, D.; Klymchenko, A.S. Fluorogenic Squaraine Dimers with Polarity-Sensitive Folding As Bright Far-Red Probes for Background-Free Bioimaging. J. Am. Chem. Soc. 2015, 137, 405–412. [Google Scholar] [CrossRef]
- Nadler, A.; Schultz, C. The Power of Fluorogenic Probes. Angew. Chem. Int. Ed. 2013, 52, 2408–2410. [Google Scholar] [CrossRef]
- Babendure, J.R.; Adams, S.R.; Tsien, R.Y. Aptamers Switch on Fluorescence of Triphenylmethane Dyes. J. Am. Chem. Soc. 2003, 125, 14716–14717. [Google Scholar] [CrossRef]
- Xu, S.; Hu, H.-Y. Fluorogen-activating proteins: Beyond classical fluorescent proteins. Acta Pharm. Sin. B 2018, 8, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Kubánková, M.; López-Duarte, I.; Bull, J.A.; Vadukul, D.M.; Serpell, L.C.; de Saint Victor, M.; Stride, E.; Kuimova, M.K. Probing supramolecular protein assembly using covalently attached fluorescent molecular rotors. Biomaterials 2017, 139, 195–201. [Google Scholar] [CrossRef]
- Venkatraman, P.; Nguyen, T.T.; Sainlos, M.; Bilsel, O.; Chitta, S.; Imperiali, B.; Stern, L.J. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nat. Chem. Biol. 2007, 3, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Szent-Gyorgyi, C.; Schmidt, B.F.; Schmidt, B.A.; Creeger, Y.; Fisher, G.W.; Zakel, K.L.; Adler, S.; Fitzpatrick, J.A.J.; Woolford, C.A.; Yan, Q.; et al. Fluorogen-activating single-chain antibodies for imaging cell surface proteins. Nat. Biotechnol. 2008, 26, 235–240. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Lam, K.S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 2017, 38, 117–126. [Google Scholar] [CrossRef]
- Furka, A.; Sebestyén, F.; Asgedom, M.; Dibó, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 1991, 37, 487–493. [Google Scholar] [CrossRef]
- Merrifield, R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Rieger, R.; Leung, P.S.C.; Jeddeloh, M.R.; Kurth, M.J.; Nantz, M.H.; Lam, K.S.; Barsky, D.; Ansari, A.A.; Coppel, R.L.; Mackay, I.R.; et al. Identification of 2-nonynoic acid, a cosmetic component, as a potential trigger of primary biliary cirrhosis. J. Autoimmun. 2006, 27, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Hoff, A.; Bagû, A.C.; André, T.; Roth, G.; Wiesmüller, K.H.; Gückel, B.; Brock, R. Peptide microarrays for the profiling of cytotoxic T-lymphocyte activity using minimum numbers of cells. Cancer Immunol. Immunother. CII 2010, 59, 1379–1387. [Google Scholar] [CrossRef] [Green Version]
- Peri, C.; Gori, A.; Gagni, P.; Sola, L.; Girelli, D.; Sottotetti, S.; Cariani, L.; Chiari, M.; Cretich, M.; Colombo, G. Evolving serodiagnostics by rationally designed peptide arrays: The Burkholderia paradigm in Cystic Fibrosis. Sci. Rep. 2016, 6, 32873. [Google Scholar] [CrossRef]
- Liu, R.; Marik, J.; Lam, K.S. A Novel Peptide-Based Encoding System for “One-Bead One-Compound” Peptidomimetic and Small Molecule Combinatorial Libraries. J. Am. Chem. Soc. 2002, 124, 7678–7680. [Google Scholar] [CrossRef]
- Peng, L.; Liu, R.; Marik, J.; Wang, X.; Takada, Y.; Lam, K.S. Combinatorial chemistry identifies high-affinity peptidomimetics against α 4 β 1 integrin for in vivo tumor imaging. Nat. Chem. Biol. 2006, 2, 381. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.M.; Porter, K.A.; Singh, S.K.; Vanier, G.S. High-Efficiency Solid Phase Peptide Synthesis (HE-SPPS). Org. Lett. 2014, 16, 940–943. [Google Scholar] [CrossRef]
- Li, J.; Carney, R.P.; Liu, R.; Fan, J.; Zhao, S.; Chen, Y.; Lam, K.S.; Pan, T. Microfluidic Print-to-Synthesis Platform for Efficient Preparation and Screening of Combinatorial Peptide Microarrays. Anal. Chem. 2018, 90, 5833–5840. [Google Scholar] [CrossRef]
- Darlak, K.; Wiegandt Long, D.; Czerwinski, A.; Darlak, M.; Valenzuela, F.; Spatola, A.F.; Barany, G. Facile preparation of disulfide-bridged peptides using the polymer-supported oxidant CLEAR-OX. J. Pept. Res. Off. J. Am. Pept. Soc. 2004, 63, 303–312. [Google Scholar] [CrossRef]
- Annis, I.; Chen, L.; Barany, G. Novel Solid-Phase Reagents for Facile Formation of Intramolecular Disulfide Bridges in Peptides under Mild Conditions1,2. J. Am. Chem. Soc. 1998, 120, 7226–7238. [Google Scholar] [CrossRef]
- Xiao, W.; Bononi, F.C.; Townsend, J.; Li, Y.; Liu, R.; Lam, K.S. Immobilized OBOC combinatorial bead array to facilitate multiplicative screening. Comb. Chem. High Throughput Screen. 2013, 16, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Shih, T.-C.; Liu, R.; Fung, G.; Bhardwaj, G.; Ghosh, P.M.; Lam, K.S. A Novel Galectin-1 Inhibitor Discovered through One-Bead Two-Compound Library Potentiates the Antitumor Effects of Paclitaxel in vivo. Mol. Cancer Ther. 2017, 16, 1212–1223. [Google Scholar] [CrossRef]
- Meissner, C.; Recker, S.; Reiter, A.; Friedrich, H.J.; Oehmichen, M. Fatal versus non-fatal heroin “overdose”: Blood morphine concentrations with fatal outcome in comparison to those of intoxicated drivers. Forensic Sci. Int. 2002, 130, 49–54. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds P1–P4 are available from the authors. |
c | X6 | X5 | X4 | X3 | K(CEMG) | X2 | X1 | c | |
---|---|---|---|---|---|---|---|---|---|
P1 | c | F | Y | W | W | K(CEMG) | W | Q | c |
P2 | c | I | W | W | K(CEMG) | R | W | c | |
P3 | c | T | S | Q | G | K(CEMG) | F | A | c |
P4 | c | N | V | G | N | K(CEMG) | Q | P | c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jafari, S.; Thillier, Y.; Ajena, Y.H.; Shorty, D.; Li, J.; Huynh, J.S.; Pan, B.M.-C.; Pan, T.; Lam, K.S.; Liu, R. Rapid Discovery of Illuminating Peptides for Instant Detection of Opioids in Blood and Body Fluids. Molecules 2019, 24, 1813. https://doi.org/10.3390/molecules24091813
Jafari S, Thillier Y, Ajena YH, Shorty D, Li J, Huynh JS, Pan BM-C, Pan T, Lam KS, Liu R. Rapid Discovery of Illuminating Peptides for Instant Detection of Opioids in Blood and Body Fluids. Molecules. 2019; 24(9):1813. https://doi.org/10.3390/molecules24091813
Chicago/Turabian StyleJafari, Shabnam, Yann Thillier, Yousif H. Ajena, Diedra Shorty, Jiannan Li, Jonathan S. Huynh, Bethany Ming-Choi Pan, Tingrui Pan, Kit S. Lam, and Ruiwu Liu. 2019. "Rapid Discovery of Illuminating Peptides for Instant Detection of Opioids in Blood and Body Fluids" Molecules 24, no. 9: 1813. https://doi.org/10.3390/molecules24091813
APA StyleJafari, S., Thillier, Y., Ajena, Y. H., Shorty, D., Li, J., Huynh, J. S., Pan, B. M. -C., Pan, T., Lam, K. S., & Liu, R. (2019). Rapid Discovery of Illuminating Peptides for Instant Detection of Opioids in Blood and Body Fluids. Molecules, 24(9), 1813. https://doi.org/10.3390/molecules24091813