Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. SEM Analysis
2.2. DSC Analysis
2.3. Infrared Thermography
2.3.1. Examination of MPCM Modified Textile Materials during the Heating Process
2.3.2. Examination of MPCM Modified Textile Materials during the Cooling Process
3. Materials and Methods
3.1. Textile Materials and Polymer Pastes
3.2. Incorporation Technique
3.3. Instrumental Techniques
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ying, B.-a.; Kwok, Y.-l.; Li, Y.; Zhu, Q.-y.; Yeung, C.-y. Assessing the performance of textiles incorporating phase change materials. Polym. Test. 2004, 23, 541–549. [Google Scholar] [CrossRef]
- Bahrar, M.; Djamai, Z.I.; Mankibi, M.E.; Larbi, A.S.; Salvia, M. Numerical and epxperimental study on the use of microencapsulated chase change materials (PCM) in textile reinforced concrete panels for energy storage. Sust. Cit. Soc. 2018, 41, 455–468. [Google Scholar] [CrossRef]
- Carreira, A.S.; Teixeira, R.F.A.; Beirao, A.; Vieira, R.V.; Figueiredo, M.M.; Gil, M.H. Preparation of acrylic based microcapsules using different reaction conditions for thermo-regulating textiles production. Eur. Polym. J. 2017, 93, 33–43. [Google Scholar] [CrossRef]
- Salaün, F.; Devaux, E.; Bourbigot, S.; Rumeau, P. Thermoregulating response of cotton fabric containing microencapsulated phase change materials. Thermochim. Acta 2010, 506, 82–93. [Google Scholar] [CrossRef]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- Nejman, A.; Goetzendorf-Grabowska, B. Heat balance of textile materials modified with the mixtures of PCM microcapsules. Thermochim. Acta 2013, 569, 144–150. [Google Scholar] [CrossRef]
- Nejman, A.; Cieślak, M.; Gajdzicki, B.; Goetzendorf-Grabowska, B.; Karaszewska, A. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric. Thermochim. Acta 2014, 589, 158–163. [Google Scholar] [CrossRef]
- Nejman, A.; Cieślak, M. The impact of the heating/cooling rate on the thermoregulating properties of textile materials modified with PCM microcapsules. Appl. Therm. Eng. 2017, 127, 212–223. [Google Scholar] [CrossRef]
- Jaworski, M.; Wnuk, R.; Cieślak, M.; Goetzendorf-Grabowska, B. Experimental Investigation and Mathematical Modeling of Thermal Performance Characteristics of Textiles Incorporating Phase Change Materials (PCMs). In Proceedings of the Environmental Engineering-10th International Conference, Vilnius, Lithuania, 27–28 April 2017. [Google Scholar]
- Sánchez, P.; Sánchez-Fernandez, M.V.; Romero, A.; Rodríguez, J.F.; Sánchez-Silva, L. Development of thermo-regulating textiles using paraffin wax microcapsules. Thermochim. Acta 2010, 498, 16–21. [Google Scholar] [CrossRef]
- Sarier, N.; Onder, E. Organic phase change materials and their textile applications: An overview. Thermochim. Acta 2012, 540, 7–60. [Google Scholar] [CrossRef]
- Zalba, B.; Marin, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Regin, A.F.; Solanki, S.C.; Saini, J.S. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renew. Sustain. Energy Rev. 2008, 12, 2438–2458. [Google Scholar] [CrossRef]
- Milian, Y.E.; Gutierrez, A.; Grageda, M.; Ushak, S. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renew. Sustain. Energy Rev. 2017, 73, 983–999. [Google Scholar] [CrossRef]
- Onder, E.; Sarier, N.; Cimen, E. Encapsulation of phase change materials by complex coacervation to improve thermal performance of woven fabrics. Thermochim. Acta 2008, 467, 63–72. [Google Scholar] [CrossRef]
- Sanchez-Silva, L.; Rodriguez, J.; Romero, A.; Sanchez, P. Preparation of coated thermo-regulating textiles using Rubitherm-RT31 microcapsules. J. Appl. Polym. Sci. 2012, 124, 4809–4818. [Google Scholar] [CrossRef]
- Persico, P.; Aciern, D.; Carfagna, C.; Cimino, F. Mechanical and thermal behavior of ecofriendly composites reinforced by Kenaf and Caroa fibers. Inter. J. Polym. Sci. 2011, 2011, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Onofrei, E.; Rocha, A.M.; Catarino, A. Textiles integrating PCMS—A review. Bul. Inst. Politeh. Iasi 2010, 60, 99–107. [Google Scholar]
- Rao, Y.; Lin, G.; Luo, Y.; Chen, S.; Wang, L. Preparation and thermal properties ofmicroencapsulated phase change material for enhancing fluid flow heattransfer. Heat Trensf. Asian Res. 2007, 36, 28–37. [Google Scholar] [CrossRef]
- Su, J.-F.; Wang, X.-Y.; Huang, Z.; Zhao, Y.-H.; Yuan, X.-Y. Thermal conductivity of microPCMs- filled epoxy matrix composites. Colloid Polym. Sci. 2011, 289, 1535–1542. [Google Scholar] [CrossRef] [Green Version]
- Shin, Y.; Yoo, D.-I.; Son, K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules. J. Appl. Polym. Sci. 2005, 96, 2005–2010. [Google Scholar] [CrossRef]
- Kim, J.; Cho, G. Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules. Text. Res. J. 2002, 72, 1093–1098. [Google Scholar] [CrossRef]
- Chung, H.; Cho, G. Thermal properties and physiological responses of vapor-permeable water-repellent fabrics treated with microcapsule-containing PCMs. Text. Res. J. 2004, 74, 571–575. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | Melting Process | Crystallization Process | |||||||
---|---|---|---|---|---|---|---|---|---|
TOnset (S-S)3 [°C] | TOnset (S-L)3 [°C] | TEnd [°C] | Tm [°C] | ΔHm2 [J/g] | TOnset [°C] | TEnd [°C] | Tc [°C] | ΔHc2 [J/g] | |
MPCM28 [6,7] | −0.6 ± 0.2 1 | 23.2 ± 0.2 | 35.2 ± 0.8 | 28.7 ± 0.5 | 173.5 ± 1.7 | 24.5 ± 0.1 | −5.2 ± 0.4 | 17.9 ± 0.5 | 172.3 ± 2.3 |
W28/20 | 2.8 ± 0.2 | 22.6 ± 0.3 | 28.9 ± 0.2 | 26.7 ± 0.2 | 16.7 ± 1.1 | 23.3 ± 0.1 | −2.2 ± 0.3 | 19.8 ± 0.2 | 17.1 ± 1.4 |
W28/40 | 2.6 ± 0.2 | 22.9 ± 0.2 | 29.9 ± 0.2 | 27.6 ± 0.1 | 31.3 ± 0.5 | 23.5 ± 0.1 | −2.9 ± 0.2 | 18.9 ± 0.1 | 31.6 ± 0.5 |
K28/20 [7] | 1.6 ± 0.4 | 22.9 ± 0.1 | 29.7 ± 0.2 | 26.6 ± 0.2 | 23.4 ± 1.0 | 24.0 ± 0.0 | −3.0 ± 0.1 | 20.5 ± 0.1 | 23.0 ± 1.1 |
K28/40 [7] | 0.9 ± 0.6 | 23.0 ± 0.1 | 31.8 ± 0.1 | 28.3 ± 0.5 | 54.4 ± 1.3 | 23.5 ± 0.3 | −4.5 ± 0.5 | 18.1 ± 0.6 | 54.7 ± 2.0 |
MPCM43 [6] | 10.7 ± 0.4 | 36.4 ± 0.2 | 49.9 ± 0.3 | 44.0 ± 0.3 | 155.1 ± 2.0 | 41.1 ± 0.2 | 4.0 ± 0.3 | 33.4 ± 0.2 | 154.7 ± 2.6 |
W43/20 | 11.0 ± 0.2 | 35.4 ± 0.3 | 44.4 ± 0.1 | 41.3 ± 0.2 | 16.6 ± 1.3 | 39.1 ± 0.1 | 4.2 ± 0.2 | 33.6 ± 0.3 | 15.0 ± 0.2 |
W43/40 | 10.7 ± 0.3 | 35.8 ± 0.2 | 44.6 ± 0.3 | 41.7 ± 0.4 | 27.2 ± 0.2 | 39.4 ± 0.3 | 4.5 ± 0.2 | 33.8 ± 0.1 | 26.2 ± 0.2 |
K43/20 | 10.4 ± 0.1 | 36.2 ± 0.2 | 44.4 ± 0.3 | 41.6 ± 0.3 | 31.8 ± 0.9 | 39.1 ± 0.3 | 5.1 ± 0.1 | 33.7 ± 0.5 | 27.0 ± 0.7 |
K43/40 [6] | 10.9 ± 0.5 | 36.4 ± 0.2 | 46.0 ± 1.2 | 43.1 ± 0.8 | 50.4 ± 0.5 | 39.7 ± 0.2 | 4.5 ± 0.7 | 34.0 ± 0.8 | 51.9 ± 0.9 |
Sample | W28/20 | W28/40 | K28/20 | K28/40 | W43/20 | W43/40 | K43/20 | K43/40 |
---|---|---|---|---|---|---|---|---|
TmIR [°C] | 26.7 ± 0.34 | 26.9 ± 0.27 | 27.4 ± 0.49 | 27.2 ± 0.52 | 40.8 ± 0.52 | 41.2 ± 0.32 | 43.1 ± 0.64 | 41.9 ± 0.53 |
Paste with MPCM | Pastes Characteristic | ||||
---|---|---|---|---|---|
MPCM (wt.%) | Revacryl 123 (wt.%) | Helizarin® Fixing Agent TX 4737 (wt.%) | Lutexal® Thickener TX 4733 (wt.%) | Water (wt.%) | |
MPCM/0 | 0 | 25 | 2 | 5 | 68 |
MPCM/20 | 20 | 20 | 2 | 3 | 55 |
MPCM/40 | 40 | 20 | 3 | 1 | 36 |
PET Woven Fabric with Plain Weave, Yarn-Staple Fibers | Modified Woven Fabrics | |||||
---|---|---|---|---|---|---|
Without MPCM | MPCM28 | MPCM43 | ||||
MPCM content in the coating paste [%] | raw | 0% | 20% | 40% | 20% | 40% |
Sample symbol | W | W 0 | W28/20 | W28/40 | W43/20 | W43/40 |
Weight (W) [g/m2] | 172.0 ± 0.5 1 | 200.0 ± 1.7 | 217.0 ± 1.4 | 230.0 ± 0.9 | 220.0 ± 0.8 | 232.0 ± 1.0 |
Thickness [mm] | 0.43 ± 0.01 | 0.45 ± 0.00 | 0.47 ± 0.01 | 0.51 ± 0.01 | 0.47 ± 0.01 | 0.50 ± 0.01 |
Add-on [%] | - | 14 | 16 | 25 | 22 | 26 |
PET Knitted Fabric with a Column Weave, Yarn- Continuous Fibers | Modified Knitted Fabrics | |||||
---|---|---|---|---|---|---|
without MPCM | MPCM28 | MPCM43 | ||||
MPCM content in the coating paste [%] | raw | 0% | 20% | 40% | 20% | 40% |
Sample symbol | K | K 0 | K28/20 | K28/40 | K43/20 | K43/40 |
Weight (W) [g/m2] | 73.0 ± 0.7 1 | 95.0 ± 0.9 | 108.0 ± 1.1 | 125.0 ± 0.7 | 106.0 ± 0.6 | 131.0 ± 1.7 |
Thickness [mm] | 0.28 ± 0.01 | 0.26 ± 0.01 | 0.30 ± 0.02 | 0.39 ± 0.02 | 0.30 ± 0.01 | 0.34 ± 0.01 |
Add-on [%] | - | 23 | 32 | 42 | 31 | 44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nejman, A.; Gromadzińska, E.; Kamińska, I.; Cieślak, M. Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods. Molecules 2020, 25, 122. https://doi.org/10.3390/molecules25010122
Nejman A, Gromadzińska E, Kamińska I, Cieślak M. Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods. Molecules. 2020; 25(1):122. https://doi.org/10.3390/molecules25010122
Chicago/Turabian StyleNejman, Alicja, Ewa Gromadzińska, Irena Kamińska, and Małgorzata Cieślak. 2020. "Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods" Molecules 25, no. 1: 122. https://doi.org/10.3390/molecules25010122
APA StyleNejman, A., Gromadzińska, E., Kamińska, I., & Cieślak, M. (2020). Assessment of Thermal Performance of Textile Materials Modified with PCM Microcapsules Using Combination of DSC and Infrared Thermography Methods. Molecules, 25(1), 122. https://doi.org/10.3390/molecules25010122