The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil and Hydroponic Cultivation
2.2. In Vitro Plant Material
2.3. Scanning Electron Microscopy
2.4. Spectroscopic Analysis
2.5. HPLC-PDA Analysis
2.6. Principal Component Analysis
3. Materials and Methods
3.1. Reference Standard and Chemicals
3.2. Plant Material
3.2.1. Field Cultivation
3.2.2. Hydroponic Cultivation
3.2.3. In Vitro Cultures
3.3. Scanning Electron Microscopy
3.4. Standards and Sample Preparation
3.5. Spectroscopic Analysis
3.6. HPLC-PDA Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Załuski, D.; Verpoorte, R. Historical and traditional medical applications of Carlina acaulis L.—A critical ethnopharmacological review. J. Ethnopharmacol. 2019, 239, 111842. [Google Scholar] [CrossRef]
- Menale, B.; Amato, G.; Di Prisco, C.; Muoio, R. Traditional uses of plants in north-western Molise (Central Italy). Delpinoa 2006, 48, 29–36. [Google Scholar]
- Guarrera, P.M. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia 2003, 74, 515–544. [Google Scholar] [CrossRef]
- Redžić, S.S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Coll. Antropol. 2007, 31, 869–890. [Google Scholar] [PubMed]
- Rexhepi, B.; Mustafa, B.; Hajdari, A.; Rushidi-Rexhepi, J.; Quave, C.L.; Pieroni, A. Traditional medicinal plant knowledge among Albanians, Macedonians and Gorani in the Sharr Mountains (Republic of Macedonia). Genet. Resour. Crop Evol. 2013, 60, 2055–2080. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Rutkowska, E.; Szwerc, W.; Kocjan, R.; Latalski, M. Carlina species as a new source of bioactive pentacyclic triterpenes. Ind. Crops Prod. 2016, 94, 498–504. [Google Scholar] [CrossRef]
- Jaiswal, R.; Deshpande, S.; Kuhnert, N. Profling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leavesby LC-MSn. Phytochem. Anal. 2011, 22, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Strzemski, M.; Wojnicki, K.; Sowa, I.; Wojas-Krawczyk, K.; Krawczyk, P.; Kocjan, R.; Such, J.; Latalski, M.; Wnorowski, A.; Wójciak-Kosior, M. In vitro antiproliferative activity of extracts of Carlina acaulis subsp. caulescens and Carlina acanthifolia subsp. utzka. Front. Pharmacol. 2017, 8, 371. [Google Scholar] [CrossRef]
- Raynaud, J.; Rasolojaona, L. Flavonoides des feuilles de Carlina acaulis. Planta Med. 1979, 37, 168–171. [Google Scholar] [CrossRef]
- Dordević, S.; Tadić, V.; Petrović, S.; Kukić-Marković, J.; Dobrić, S.; Milenković, M.; Hadžifejzović, N. Bioactivity assays on Carlina acaulis and C. acanthifolia root and herb extracts. Dig. J. Nanomater. Biostruct. 2012, 7, 1213–1222. [Google Scholar]
- Chalchat, J.C.; Djordjevic, C.; Gorunovic, M. Composition of the essential oil from the root of Carlina acaulis L. Asteraceae. J. Essent. Oil Res. 1996, 8, 577–578. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Kocjan, R.; Tyszczuk-Rotko, K. Methodological approach to determine carlina oxide—A main volatile constituent of Carlina acaulis L. essential oil. Talanta 2019, 191, 504–508. [Google Scholar] [CrossRef] [PubMed]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Agacka-Mołdoch, M.; Drączkowski, P.; Matosiuk, D.; Kurach, Ł.; Kocjan, R.; Dresler, S. Application of Raman spectroscopy for direct analysis of Carlina acanthifolia subsp. utzka root essential oil. Talanta 2017, 174, 633–637. [Google Scholar] [PubMed]
- Benelli, G.; Pavela, R.; Petrelli, R.; Nzekoue, F.K.; Cappellacci, L.; Lupidi, G.; Quassinti, L.; Bramucci, M.; Sut, S.; Dall’Acqua, S.; et al. Carlina oxide from Carlina acaulis root essential oil acts as a potent mosquito larvicide. Ind. Crops Prod. 2019, 137, 356–366. [Google Scholar] [CrossRef]
- Vangendt, J.; Berchtold, J.-P.; Jacob, J.-C.; Holveck, P.; Hoff, M.; Pierne, A.; Reduron, J.-P.; Boeuf, R.; Combroux, I.; Heitzler, P.; et al. La Liste rouge de la Flore Vasculaire Menacée en Alsace. 2014. Available online: http://www.fcbn.fr/ressource/liste-rouge-de-la-flore-vasculaire-menacee-en-alsace (accessed on 3 December 2019).
- Zielinska, S.; Wójciak-Kosior, M.; Płachno, B.J.; Sowa, I.; Włodarczyk, M.; Matkowski, A. Quaternary alkaloids in Chelidonium majus in vitro cultures. Ind. Crops Prod. 2018, 123, 17–24. [Google Scholar] [CrossRef]
- Krzyzanowska, J.; Janda, B.; Pecio, L.; Stochmal, A.; Oleszek, W.; Czubacka, A.; Przybys, M.; Doroszewska, T. Determination of polyphenols in Mentha longifolia and M. piperita field-grown and in vitro plant samples using UPLC-TQ-MS. J. AOAC Int. 2011, 94, 43–50. [Google Scholar]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Sgherri, C.; Cecconami, S.; Pinzino, C.; Navari-Izzo, F.; Izzo, R. Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chem. 2010, 123, 416–422. [Google Scholar] [CrossRef]
- Dresler, S.; Hawrylak-Nowak, B.; Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Hanaka, A.; Gołoś, I.; Skalska-Kamińska, A.; Cieślak, M.; Kováčik, J.; et al. Metabolic changes induced by silver ions in Carlina acaulis. Plants 2019, 8, 517. [Google Scholar] [CrossRef] [Green Version]
- Popielarska-Konieczna, M.; Kozieradzka-Kiszkurno, M.; Świerczyńska, J.; Góralski, G.; Ślesak, H.; Bohdanowicz, J. Ultrastructure and histochemical analysis of extracellular matrix surface network in kiwifruit endosperm-derived callus culture. Plant Cell Rep. 2008, 27, 1137–1145. [Google Scholar] [CrossRef]
- Ahmed, M.; Khan, M.I.; Khan, M.R.; Muhammad, N.; Khan, A.U.; Khan, R.A. Role of medicinal plants in oxidative stress and cancer. Open Access Sci. Rep. 2013, 2, 2–4. [Google Scholar]
- Farah, A.; de Paula Lima, J. Consumption of chlorogenic acids through coffee and health implications. Beverages 2019, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Liang, N.; Kitts, D.D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 2015, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.G.; Hu, Q.P.; Liu, Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 2012, 60, 11625–11630. [Google Scholar] [CrossRef] [PubMed]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinowska, M.; Sikora, E.; Ogonowski, J. Production of triterpenoids with cell and tissue cultures. Acta Biochim. Pol. 2013, 60, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Vergara Martínez, V.M.; Estrada-Soto, S.E.; De Arellano-García, J.; Rivera-Leyva, J.C.; Castillo-España, P.; Flores, A.F.; Cardoso-Taketa, A.T.; Perea-Arango, I. Methyl jasmonate and salicylic acid enhanced the production of ursolic and oleanolic acid in callus cultures of Lepechinia caulescens. Pharmacogn. Mag. 2017, 13, S886–S889. [Google Scholar]
- Srivastava, P.; Kasoju, N.; Bora, U.; Chaturvedi, R. Accumulation of betulinic, oleanolic, and ursolic acids in in vitro cell cultures of Lantana camara L. and their significant cytotoxic effects on HeLa cell lines. Biotechnol. Bioprocess Eng. 2010, 15, 1038–1046. [Google Scholar] [CrossRef]
- Gonçalves, S.; Romano, A. In vitro culture of lavenders (Lavandula spp.) and the production of secondary metabolites. Biotechnol. Adv. 2013, 31, 166–174. [Google Scholar] [CrossRef]
- Sangwan, N.S.; Farooqi, A.H.A.; Shabih, F.; Sangwan, R.S. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Zielińska, S.; Dąbrowska, M.; Kozłowska, W.; Kalemba, D.; Abel, R.; Dryś, A.; Szumny, A.; Matkowski, A. Ontogenetic and trans-generational variation of essential oil composition in Agastache rugosa. Ind. Crops Prod. 2017, 97, 612–619. [Google Scholar] [CrossRef]
- Trejgell, A.; Da̧browska, G.; Tretyn, A. In vitro regeneration of Carlina acaulis subsp. simplex from seedling explants. Acta Physiol. Plant. 2009, 31, 445–453. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Strzemski, M.; Wójciak-Kosior, M.; Sowa, I.; Załuski, D.; Szwerc, W.; Sawicki, J.; Kocjan, R.; Feldo, M.; Dresler, S. Carlina vulgaris L. as a source of phytochemicals with antioxidant activity. Oxid. Med. Cell. Longev. 2017, 2017, 1891849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the Carlina plants are available from the authors. |
Plant Morphology | Explant | Abundance of Callus Induced on Medium: | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | ||
Plants with glabrous leaves | Leaves | ++ | +++ | +++ | +++ | + |
Roots | ++ | + | ++ | ++ | + | |
Plants with tomentose leaves | Leaves | ++ | +++ | ++ | +++ | + |
Roots | ++ | ++ | ++ | ++ | + |
Medium | Plants with Tomentose Leaves | Plants with Glabrous Leaves | Plants from Soil Cultivation | Plants from Hydroponic Cultivation | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calus from the Root | Calus from the Leaf | Calus from the Root | Calus from the Leaf | Roots | Leaves | Roots | Leaves | |||||||||||||
B | D | E | A | B | C | D | E | B | C | D | E | A | C | D | E | |||||
FC | 0.84 ± 0.07 d | 0.63 ± 0.09 de | 0.85 ± 0.07 d | 1.04 ± 0.09 cd | 0.42 ± 0.04 e | 0.57 ± 0.05 e | 0.82 ± 0.07 d | 0.99 ± 0.08 cd | 0.50 ± 0.05 e | 0.70 ± 0.06 de | 0.05 ± 0.03 f | 2.18 ± 0.04 bc | 0.81 ± 0.05 d | 0.69 ± 0.04 de | 0.77 ± 0.04 d | 1.57 ± 0.12 c | 2.92 ± 0.37 b | 34.67 ± 1.36 a | 3.69 ± 0.67 b | 38.26 ± 5.50 a |
TPC | 6.46 ± 0.24 ef | 4.81 ± 0.13 g | 35.89 ± 1.29 a | 7.81 ± 0.28 de | 1.92 ± 0.09 h | 5.90 ± 0.12 fg | 19.66 ± 0.97 b | 6.74 ± 0.28 ef | 2.73 ± 0.05 h | 28.05 ± 1.07 a | n. d. | 5.31 ± 0.22 fg | 13.44 ± 0.34 c | 6.46 ± 0.19 ef | 10.92 ± 0.26 cd | 17.93 ± 0.85 b | 18.73 ±1.32 b | 19.06 ± 0.30 b | 19.90 ±2.54 b | 12.05 ± 0.53 c |
DPPH | 6.69 ± 0.12 b | 3.87 ± 0.10 d | 5.93 ± 0.14 bc | 4.18 ± 0.11 cd | 4.74 ± 0.13 c | 6.37 ± 0.15 b | 7.25 ± 0.26 b | 2.36 ± 0.05 e | 3.57 ± 0.13 d | 6.50 ± 0.18 b | 0.01 ± 0.01 f | 2.18 ± 0.05 e | 5.97 ± 0.12 bc | 6.46 ± 0.25 b | 6.65 ± 0.27 b | 2.82 ± 0.11 de | 5.24 ±1.26 bc | 17.02 ± 2.43 a | 4.72 ± 0.62 c | 2.71 ± 0.37 de |
ABTS | 13.34 ± 0.50 bc | 10.65 ± 0.25 de | 13.74 ± 0.59 bc | 9.37 ± 0.41 ef | 8.56 ± 0.27 f | 13.63 ± 0.51 bc | 15.20 ± 0.33 ab | 10.76 ± 0.27 de | 10.37 ± 0.24 de | 14.70 ± 0.47 ab | 1.12 ± 0.02 g | 8.23 ± 0.16 f | 10.21 ± 0.22 de | 12.75 ± 0.48 c | 14.89 ± 0.62 ab | 10.51 ± 0.57 d | 11.18 ± 0.63 cd | 16.99 ± 0.66 a | 8.22 ±1.55 f | 8.08 ± 0.48 f |
Medium | Plants with Tomentose Leaves | Plants with Glabrous Leaves | Plants from Soil Cultivation | Plants from Hydroponic Cultivation | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calus from the Root | Calus from the Leaf | Calus from the Root | Calus from the Leaf | Roots | Leaves | Roots | Leaves | |||||||||||||
B | D | E | A | B | C | D | E | B | C | D | E | A | C | D | E | |||||
ChA | 4.98 ± 0.25 d | 1.37 ± 0.19 g | 2.26 ± 0.13 fg | 2.40 ± 0.12 f | 4.46 ± 0.22 de | 3.71 ± 0.12 e | 6.35 ± 0.36 c | 0.13 ± 0.02 h | 0.78 ± 0.04 g | 8.47 ± 0.41 b | n. d. | 0.82 ± 0.05 g | 6.42 ± 0.38 c | 8.44 ± 0.38 b | 6.50 ± 0.22 c | 0.78 ± 0.04 g | 2.44 ± 0.24 f | 10.21 ± 1.69 a | 2.16 ± 0.28 g | 2.82 ± 0.30 ef |
3,5CQA | 1.31 ± 0.08 cd | 0.64 ± 0.05 fg | 1.64 ± 0.12 bc | 0.52 ± 0.03 g | 0.47 ± 0.03 g | 1.11 ± 0.07 d | 2.02 ± 0.10 ab | 0.08 ± 0.03 h | 0.50 ± 0.01 g | 2.97 ± 0.13 a | n. d. | 0.39 ± 0.01 g | 1.05 ± 0.08 de | 1.15 ± 0.11 d | 2.93 ± 0.14 a | 0.40 ± 0.01 g | 1.57 ± 0.11 c | 0.91 ± 0.13 ef | 1.78 ± 0.33 b | 0.77 ± 0.11 f |
OA | 0.15 ± 0.01 de | 0.03 ± 0.04 h | 0.05 ± 0.08 fg | 0.11 ± 0.01 e | 0.03 ± 0.01 g | 0.05 ± 0.03 g | n. d. | 0.04 ± 0.02 g | n. d. | 0.04 ± 0.02 g | n. d. | 0.10 ± 0.01 ef | 0.04 ± 0.03 gh | 0.04 ± 0.02 gh | 0.07 ± 0.03 f | 0.23 ± 0.01 c | n. d. | 2.05 ± 0.08 a | n. d. | 1.20 ± 0.53 b |
UA | n. d. | 0.08 ± 0.02 d | 0.03 ± 0.01 e | 0.05 ± 0.03 de | n. d. | n. d. | n. d. | n. d. | n. d. | 0.03 ± 0.01 e | n. d. | 0.20 ± 0.02 c | n. d. | 0.04 ± 0.02 de | 0.28 ± 0.02 b | 0.29 ± 0.02 b | n. d. | 5.57 ± 0.22 a | n. d. | 3.64 ± 0.95 a |
CO | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | n. d. | 8.73 ± 2.31 a | n. d. | 0.14 ± 0.03 b | n. d. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzemski, M.; Dresler, S.; Sowa, I.; Czubacka, A.; Agacka-Mołdoch, M.; Płachno, B.J.; Granica, S.; Feldo, M.; Wójciak-Kosior, M. The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material. Molecules 2020, 25, 146. https://doi.org/10.3390/molecules25010146
Strzemski M, Dresler S, Sowa I, Czubacka A, Agacka-Mołdoch M, Płachno BJ, Granica S, Feldo M, Wójciak-Kosior M. The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material. Molecules. 2020; 25(1):146. https://doi.org/10.3390/molecules25010146
Chicago/Turabian StyleStrzemski, Maciej, Sławomir Dresler, Ireneusz Sowa, Anna Czubacka, Monika Agacka-Mołdoch, Bartosz J. Płachno, Sebastian Granica, Marcin Feldo, and Magdalena Wójciak-Kosior. 2020. "The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material" Molecules 25, no. 1: 146. https://doi.org/10.3390/molecules25010146
APA StyleStrzemski, M., Dresler, S., Sowa, I., Czubacka, A., Agacka-Mołdoch, M., Płachno, B. J., Granica, S., Feldo, M., & Wójciak-Kosior, M. (2020). The Impact of Different Cultivation Systems on the Content of Selected Secondary Metabolites and Antioxidant Activity of Carlina acaulis Plant Material. Molecules, 25(1), 146. https://doi.org/10.3390/molecules25010146