Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch (Vicia sativa spp.)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Proximate Analysis
2.2. Effect of Instant Controlled Pressure Drop, Cooking and Germination on Non-Nutritional Factors of Vetches
2.2.1. Effect of Instant Controlled Pressure Drop Treatment on NNF of Vetches
2.2.2. Effect of Cooking on NNF of Vetches
2.2.3. Effect of Germination on NNF of Vetches
2.3. Principal Component Analysis
3. Materials and Methods
3.1. Seeds
Chemical Proximate Analysis
3.2. Vetches Treatments
3.2.1. Instant Controlled Pressure Drop
3.2.2. Cooking Treatment
3.2.3. Germination
3.3. Non-Nutritional Factors Evaluation
3.3.1. Methanolic Extracts Preparation
3.3.2. Total Phenolics Quantification
3.3.3. Flavonoids Quantification
3.3.4. Tannins Quantification
3.3.5. Oligosaccharides Quantification
3.3.6. Phytates Quantification
3.3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- López-Barrios, L.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bioactive Peptides and Hydrolysates from Pulses and their Potential Use as Functional Ingredients. J. Food Sci. 2014, 79, R273–R283. [Google Scholar] [CrossRef]
- FAO. International Year of Legumes. Available online: http://www.fao.org/pulses-2016/en/ (accessed on 23 October 2017).
- Padhi, E.M.T.; Ramdath, D.D. A Review of the Relationship Between Pulse Consumption and Reduction of Cardiovascular Disease Risk Factors. J. Funct. Foods. 2017, 38, 635–643. [Google Scholar] [CrossRef]
- Mathers, J.C. Pulses and Carcinogenesis: Potential for the Prevention of Colon, Breast and Other Cancers. Br. J. Nutr. 2007, 88, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Ramdath, D.; Renwick, S.; Duncan, A.M. The Role of Pulses in the Dietary Management of Diabetes. Can. J. Diabetes 2016, 40, 355–363. [Google Scholar] [CrossRef]
- Jayalath, V.H.; de Souza, R.J.; Sievenpiper, J.L.; Ha, V.; Chiavaroli, L.; Mirrahimi, A.; Di Buono, M.; Bernstein, A.M.; Leiter, L.A.; Kris-Etherton, P.M.; et al. Effect of Dietary Pulses on Blood Pressure: A Systematic Review and Meta-analysis of Controlled Feeding Trials. Am. J. Hypertens. 2014, 27, 56–64. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 12 January 2018).
- Ribeiro, A.C.; Teixeira, A.R.; Ferreira, R.B. Characterization of Globulins from Common Vetch (Vicia Sativa L.). J. Agric. Food Chem. 2004, 52, 4913–4920. [Google Scholar] [CrossRef]
- Soetan, K.; Oyewole, O. The Need for Adequate Processing to Reduce the Anti- Nutritional Factors in Plants Used as Human Foods and Animal Feeds: A review. Afr. J. Food Sci. 2009, 3, 223–232. [Google Scholar]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K.J. Reduction of Phytic Acid and Enhancement of Bioavailable Micronutrients in Food Grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrosa, M.M.; Cuadrado, C.; Burbano, C.; Allaf, K.; Haddad, J.; Gelencsér, E.; Takács, K.; Guillamón, E.; Muzquiz, M. Effect of Instant Controlled Pressure Drop on the Oligosaccharides, Inositol Phosphates, Trypsin Inhibitors and Lectins Contents of Different Legumes. Food Chem. 2012, 131, 862–868. [Google Scholar] [CrossRef]
- Pugalenthi, M.; Siddhuraju, P.; Vadivel, V. Effect of Soaking Followed by Cooking and the Addition of α-Galactosidase on Oligosaccharides Levels in Different Canavalia Accessions. J. Food Compos. Anal. 2006, 19, 512–517. [Google Scholar] [CrossRef]
- Suneja, Y.; Kaur, S.; Gupta, A.K.; Kaur, N. Levels of Nutritional Constituents and Antinutritional Factors in Black Gram (Vigna Mungo L. Hepper). Food Res. Int. 2011, 44, 621–628. [Google Scholar] [CrossRef]
- Roberfroid, M. Health Benefits of Non-Digestible Oligosaccharides. In Dietary Fiber in Health and Disease; Springer: Basel, Switzwerland, 1997; pp. 211–219. [Google Scholar]
- Thompson, L.U. Potential Health Benefits and Problems Associated with Antinutrients in Foods. Food Res. Int. 1993, 26, 131–149. [Google Scholar] [CrossRef]
- Gemede, H.F. Potential Health Benefits and Adverse Effects Associated with Phytate in Foods: A Review. Glob. J. Med. Res. 2014, 27, 2224–6088. [Google Scholar]
- Muzquiz, M.; Wood, J.; Yadav, S.; Redden, B.; Chen, W.; Sharma, B. Chickpea Breeding and Management; CABI International: Wallingford, UK, 2007. [Google Scholar]
- Cuadrado, C.; Takacs, K.; Szabó, E.; Pedrosa, M. Non-nutritional Factors: Lectins, Phytic Acid, Proteases Inhibitors, Allergens. In Legumes; Royal Chemistry Society: London, UK, 2018; pp. 152–176. [Google Scholar]
- Champ, M.M.-J. Non-Nutrient Bioactive Substances of Pulses. Br. J. Nutr. 2002, 88, 307–319. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. Food Res. Int. 2010, 43, 461–482. [Google Scholar] [CrossRef]
- Avilés-Gaxiola, S.; Chuck-Hernández, C.; Serna Saldívar, S.O. Inactivation Methods of Trypsin Inhibitor in Legumes: A Review. Concise. Rev. Hypotheses. Food Sci. 2017, 83, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.; Habiba, R.; Shatta, A.; Embaby, H. Effect of Soaking, Germination, Cooking and Fermentation on Antinutritional Factors in Cowpeas. Mol. Nutr. Food Res. 2002, 46, 92–95. [Google Scholar] [CrossRef]
- Khandelwal, S.; Udipi, S.A.; Ghugre, P. Polyphenols and Tannins in Indian Pulses: Effect of Soaking, Germination and Pressure Cooking. Food Res. Int. 2010, 43, 526–530. [Google Scholar] [CrossRef]
- Vidal-Valverde, C.; Frias, J.; Estrella, I.; Gorospe, M.J.; Ruiz, R.; Bacon, J. Effect of Processing on Some Antinutritional Factors of Lentils. J. Agric. Food Chem. 1994, 42, 2291–2295. [Google Scholar] [CrossRef]
- Sadeghi, G.; Pourreza, J.; Samei, A.; Rahmani, H. Chemical Composition and Some Anti-Nutrient Content of Raw and Processed Bitter Vetch (Vicia ervilia) Seed for Use as Feeding Stuff in Poultry Diet. Trop. Anim. Health. Prod. 2009, 41, 85–93. [Google Scholar] [CrossRef]
- Silva, H.; Braga, G. Effect of Soaking and Cooking on the Oligosaccharide Content of Dry Beans (Phaseolus vulgaris, L.). J. Food Sci. 1982, 47, 924–925. [Google Scholar] [CrossRef]
- Kon, S. Effect of Soaking Temperature on Cooking and Nutritional Quality of Beans. J. Food Sci. 1979, 44, 1329–1335. [Google Scholar] [CrossRef]
- Walker, A.F.; Kochhar, N. Effect of Processing Including Domestic Cooking on Nutritional Quality of Legumes. Proc. Nutr. Soc. 1982, 41, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Chang, S.K. Effect of Soaking, Boiling, and Steaming on Total Phenolic Contentand Antioxidant Activities of Cool Season Food Legumes. Food Chem. 2008, 110, 1–13. [Google Scholar] [CrossRef]
- Wang, N.; Hatcher, D.; Tyler, R.; Toews, R.; Gawalko, E. Effect of Cooking on the Composition of Beans (Phaseolus vulgaris L.) and Chickpeas (Cicer arietinum L.). Food Res. Int. 2010, 43, 589–594. [Google Scholar] [CrossRef]
- Mounir, S.; Allaf, K. Three-Stage Spray Drying: New Process Involving Instant Controlled Pressure Drop. Dry. Technol. 2008, 26, 452–463. [Google Scholar] [CrossRef]
- Haddad, J.; Allaf, K. A Study of the Impact of Instantaneous Controlled Pressure Drop on the Trypsin Inhibitors of Soybean. J. Food Eng. 2007, 79, 353–357. [Google Scholar] [CrossRef]
- Jiménez Martínez, C.; Cardador Martínez, A.; Martinez Ayala, A.; Muzquiz, M.; Martin Pedrosa, M.; Dávila-Ortiz, G. Changes in Protein, Nonnutritional Factors, and Antioxidant Capacity During Germination of L. Campestris seeds. Int. J. Agron. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Gautam, A.; Panwar, H.; Singh, D.; Srivastava, N.; Bhagyawant, S.; Upadhayay, H. Effects of Germination on Antioxidant and Anti Nutritional Factors of Commonly Used Pulses. Int. J. Res. Chem. Environ. 2014, 4, 100–104. [Google Scholar]
- Savelkoul, F.H.M.G.; Van Der Poel, A.F.B.; Tamminga, S. The Presence and Inactivation of Trypsin Inhibitors, Tannins, Lectins and Amylase Inhibitors in Legume Seeds During Germination. A review. Plant. Foods. Hum. Nutr. 1992, 42, 71–85. [Google Scholar] [CrossRef]
- Sampath, S.; Rao, M.T.; Reddy, K.K.; Arun, K.; Reddy, P. Effect of Germination on Oligosaccharides in Cereals and Pulses. J. Food Sci. Technol–Mysore. 2008, 45, 196–198. [Google Scholar]
- López-Martínez, L.X.; Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Heredia, J.B. Effect of Cooking and Germination on Bioactive Compounds in Pulses and their Health Benefits. J. Funct. Foods 2017, 38, 624–634. [Google Scholar] [CrossRef]
- Liang, J.; Han, B.-Z.; Nout, M.R.; Hamer, R.J. Effects of Soaking, Germination and Fermentation on Phytic Acid, Total and in Vitro Soluble Zinc in Brown Rice. Food Chem. 2008, 110, 821–828. [Google Scholar] [CrossRef]
- de Almeida Costa, G.E.; da Silva Queiroz-Monici, K.; Reis, S.M.P.M.; de Oliveira, A.C. Chemical Composition, Dietary Fibre and Resistant Starch Contents of Raw and Cooked Pea, Common Bean, Chickpea and Lentil Legumes. Food Chem. 2006, 94, 327–330. [Google Scholar] [CrossRef]
- Rathod, R.P.; Annapure, U.S. Effect of Extrusion Process on Antinutritional Factors and Protein and Starch Digestibility of Lentil Splits. LWT–Food Sci. Technol. 2016, 66, 114–123. [Google Scholar] [CrossRef]
- Yağcı, S.; Evci, T. Effect of Instant Controlled Pressure Drop Process on Some Physicochemical and Nutritional Properties of Snacks Produced from Chickpea and Wheat. Int. J. Food Sci. Technol. 2015, 50, 1901–1910. [Google Scholar] [CrossRef]
- Allaf, T.; Allaf, K. Instant Controlled Pressure Drop (D.I.C.) in Food Processing: From Fundamental to Industrial Applications; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Lee, H.; Ha, M.J.; Shahbaz, H.M.; Kim, J.U.; Jang, H.; Park, J. High Hydrostatic Pressure Treatment for Manufacturing of Red Bean Powder: A Comparison with the Thermal Treatment. J. Food Eng. 2018. [Google Scholar] [CrossRef]
- Hefnawy, T. Effect of Processing Methods on Nutritional Composition and Anti-Nutritional Factors in Lentils (Lens Culinaris). Ann. Agric. Sci. 2011, 56, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Onyenekwe, P.; Njoku, G.; Ameh, D. Effect of Cowpea (Vigna unguiculata) Processing Methods On Flatus Causing Oligosaccharides. Nutr. Res. 2000, 20, 349–358. [Google Scholar] [CrossRef]
- Kataria, A.; Chauhan, B.; Punia, D. Antinutrients and Protein Digestibility (in vitro) of Mungbean as Affected by Domestic Processing and Cooking. Food Chem. 1989, 32, 9–17. [Google Scholar] [CrossRef]
- Burgos, V.E.; Binaghi, M.J.; de Ferrer, P.A.R.; Armada, M. Effect of Precooking on Antinutritional Factors and Mineral Bioaccessibility in Kiwicha Grains. J. Cereal. Sci. 2018, 80, 9–15. [Google Scholar] [CrossRef]
- Nnanna, I.A.; Phillips, R.D. Changes in Oligosaccharide Content, Enzyme Activities and Dry Matter during Controlled Germination of Cowpeas (Vigna Unguiculata). J. Food Sci. 1988, 53, 1782–1786. [Google Scholar] [CrossRef]
- Martín-Cabrejas, M.A.; Díaz, M.F.; Aguilera, Y.; Benítez, V.; Mollá, E.; Esteban, R.M. Influence of Germination on the Soluble Carbohydrates and Dietary Fibre Fractions in Non-Conventional Legumes. Food Chem. 2008, 107, 1045–1052. [Google Scholar] [CrossRef]
- Cominelli, E.; Confalonieri, M.; Carlessi, M.; Cortinovis, G.; Daminati, M.G.; Porch, T.G.; Losa, A.; Sparvoli, F. Phytic Acid Transport in Phaseolus Vulgaris: A New Low Phytic Acid Mutant in the PvMRP1 Gene and Study of the PvMRPs Promoters in Two Different Plant Systems. Plant. Sci. 2018, 270, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khattak, A.B.; Zeb, A.; Bibi, N.; Khalil, S.A.; Khattak, M.S. Influence of Germination Techniques on Phytic Acid and Polyphenols Content of Chickpea (Cicer arietinum L.) Sprouts. Food Chem. 2007, 104, 1074–1079. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Mohamed, E.A.; Yagoub, A.E.A.; Mohamed, A.R.; Babiker, E.E. Effect of Processing Methods on Alkaloids, Phytate, Phenolics, Antioxidants Activity and Minerals of Newly Developed Lupin (Lupinus Albus L.) Cultivar. J. Food Process. Preserv. 2017, 41, e12960. [Google Scholar] [CrossRef]
- Dicko, M.H.; Gruppen, H.; Traoré, A.S.; van Berkel, W.J.; Voragen, A.G. Evaluation of the Effect of Germination on Phenolic Compounds and Antioxidant Activities in Sorghum Varieties. J. Agric. Food Chem. 2005, 53, 2581–2588. [Google Scholar] [CrossRef]
- Xu, M.; Jin, Z.; Peckrul, A.; Chen, B. Pulse Seed Germination Improves Antioxidative Activity of Phenolic Compounds in Stripped Soybean oil-in-water Emulsions. Food Chem. 2018, 250, 140–147. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Lai, H.-M. Bioactive Compounds in Legumes and Their Germinated Products. J. Agric. Food Chem. 2006, 54, 3807–3814. [Google Scholar] [CrossRef]
- Duenas, M.; Hernández, T.; Estrella, I.; Fernández, D. Germination as a Process to Increase the Polyphenol Content and Antioxidant Activity of Lupin Seeds (Lupinus angustifolius L.). Food Chem. 2009, 117, 599–607. [Google Scholar] [CrossRef]
- Muzquiz, M.; Varela, A.; Burbano, C.; Cuadrado, C.; Guillamón, E.; Pedrosa, M.M. Bioactive Compounds in Legumes: Pronutritive and Antinutritive Actions. Implications for Nutrition and Health. Phytochem. Rev. 2012, 11, 227–244. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Allaf, T.; Fine, F.; Tomao, V.; Nguyen, C.; Ginies, C.; Chemat, F. Impact of Instant Controlled Pressure Drop pre-treatment on solvent extraction of edible oil from rapeseed seeds. OCL 2014, 21, A301. [Google Scholar] [CrossRef]
- Barampama, Z.; Simard, R.E. Effects of Soaking, Cooking and Fermentation on Composition, in-vitro Starch Digestibility and Nutritive Value of Common Beans. Plant. Foods Hum. Nutr. (Former. Qual. Plant.) 1995, 48, 349–365. [Google Scholar] [CrossRef]
- de Souza Rocha, T.; Hernandez, L.M.R.; Mojica, L.; Johnson, M.H.; Chang, Y.K.; González de Mejía, E. Germination of Phaseolus Vulgaris and Alcalase Hydrolysis of its Proteins Produced Bioactive Peptides Capable of Improving Markers Related to type-2 Diabetes in Vitro. Food Res. Int. 2015, 76, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant Activity in Common Beans (Phaseolus vulgaris L.). J. Agric. Food Chem. 2002, 50, 6975–6980. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Method. Enzymol. 1999, 299, 152–178. [Google Scholar]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and Antioxidative Activities in Common Beans (Phaseolus vulgaris L). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Deshpande, S.; Cheryan, M. Evaluation of Vanillin Assay for Tannin Analysis of Dry Beans. J. Food Sci. 1985, 50, 905–910. [Google Scholar] [CrossRef]
- Deshpande, S.; Cheryan, M. Determination of Phenolic Compounds of Dry Beans Using Vanillin, Redox and Precipitation Assays. J. Food Sci. 1987, 52, 332–334. [Google Scholar] [CrossRef]
- Burbano, C.; Muzquiz, M.; Ayet, G.; Cuadrado, C.; Pedrosa, M.M. Evaluation of Antinutritional Factors of Selected. J. Sci. Food Agric. 1999, 79, 1468–1472. [Google Scholar] [CrossRef]
- Da Costa Leite, J.M.; Trugo, L.C.; Costa, L.S.M.; Quinteiro, L.M.C.; Barth, O.M.; Dutra, V.M.L.; De Maria, C.A.B. Determination of Oligosaccharides in Brazilian Honeys of Different Botanical Origin. Food Chem. 2000, 70, 93–98. [Google Scholar] [CrossRef]
- Graf, E.; Dintzis, F.R. High-Performance Liquid Chromatographic Method for the Determination of Phytate. Anal. Biochem. 1982, 119, 413–417. [Google Scholar] [CrossRef]
Sample Availability: Samples are available from the authors. |
Moisture (%) | 15.0 ± 0.5 |
Ashes (%) | 2.5 ± 0.1 |
Crude fiber (%) | 12.1 ± 0.6 |
Total nitrogen (%) | 16.1 ± 0.9 |
Ethereal extract (%) | 5.0 ± 0.9 |
Nitrogen-free extract (%) 1 | 49.3 |
Sample | TPC 1 (mg/g) | CT 2 (mg/g) | TFC 3 (mg/m) | IP6 4 (mg/g) | Raffinose (mg/g) | Stachyose (mg/g) |
---|---|---|---|---|---|---|
DIC1 | 150.25 ± 0.22 | 10.16 ± 0.90 | 12.13 ± 0.22 | 10.40 ± 0.62 | 4.32 ± 0.03 | 47.20 ± 1.10 |
DIC2 | 129.20 ± 0.45 | 9.10 ± 0.70 | 12.35 ± 0.45 | 8.48 ± 0.71 | 4.98 ± 0.08 | 38.50 ± 0.60 |
DIC3 | 112.54 ± 0.41 | 9.41 ± 0.90 | 5.68 ± 0.04 | 11.87 ± 0.80 | 6.67 ± 0.11 | 53.82 ± 1.40 |
DIC4 | 178.96 ± 0.46 | 11.54 ± 0.70 | 6.45 ± 0.03 | 10.04 ± 0.39 | 4.38 ± 0.07 | 45.73 ± 1.12 |
DIC5 | 99.53 ± 0.17 | 8.83 ± 0.80 | 11.17 ± 0.24 | 0.99 ± 0.11 | 2.25 ± 0.01 | 4.41 ± 0.22 |
DIC6 | 147.38 ± 0.22 | 9.96 ± 1.02 | 11.78 ± 0.14 | 1.02 ± 0.32 | 1.78 ± 0.00 | 4.66 ± 0.33 |
DIC7 | 98.38 ± 0.27 | 10.16 ± 0.81 | 14.38 ± 0.17 | 10.38 ± 1.17 | 4.77 ± 0.45 | 47.69 ± 0.77 |
DIC8 | 164.60 ± 0.22 | 11.43 ± 0.83 | 6.01 ± 0.05 | 5.09 ± 0.72 | 2.00 ± 0.04 | 23.05 ± 0.56 |
DIC9 | 126.13 ± 0.12 | 10.64 ± 1.17 | 5.83 ± 0.03 | 5.08 ± 0.47 | 1.89 ± 0.05 | 23.11 ± 0.14 |
DIC10 | 152.74 ± 0.10 | 10.30 ± 0.66 | 5.40 ± 0.07 | 10.41 ± 1.25 | 4.76 ± 0.03 | 47.51 ± 0.36 |
DIC11 | 161.16 ± 0.54 | 11.05 ± 0.87 | 15.11 ± 0.77 | 6.28 ± 0.16 | 4.68 ± 0.01 | 53.15 ± 0.14 |
DIC12 | 185.47 ± 0.45 | 12.79 ± 0.92 | 13.98 ± 0.87 | 11.53 ± 2.16 | 6.89 ± 0.44 | 28.26 ± 0.22 |
DIC13 | 147.76 ± 0.44 | 10.18 ± 0.60 | 5.89 ± 0.11 | 10.49 ± 0.43 | 2.92 ± 0.01 | 47.57 ± 0.47 |
C45 | 132.45 ± 0.13 | 10.67 ± 0.33 | 11.68 ± 1.01 | 1.65 ± 0.91 | 0.68 ± 0.02 | 7.54 ± 0.50 |
C60 | 115.80 ± 0.36 | 10.12 ± 1.81 | 8.06 ± 0.23 | 0.55 ± 0.12 | 0.49 ± 0.02 | 2.57 ± 0.07 |
C90 | 212.26 ± 0.98 | 10.02 ± 1.27 | 8.47 ± 0.11 | 0.59 ± 0.07 | 0.46 ± 0.05 | 2.64 ± 0.01 |
C120 | 173.22 ± 0.78 | 9.80 ± 1.39 | 8.75 ± 0.19 | 0.63 ± 0.08 | 0.31 ± 0.06 | 3.07 ± 0.00 |
Germinated | 136.66 ± 0.78 | 11.76 ± 0.70 | 11.68 ± 0.53 | 0.57 ± 0.08 | 0.31 ± 0.04 | 2.51 ± 0.17 |
Sample | Total Phenolics Reduction (%) | Tannins Reduction (%) | Flavonoids Reduction (%) | Phytates Reduction (%) | Raffinose Reduction (%) | Stachyose Reduction (%) |
---|---|---|---|---|---|---|
DIC1 | 21.5 cd | 17.4 b | 26.7 abc | 23.0 c | 45.0 a | 23.0 bc |
DIC2 | 32.5 de | 26.0 b | 25.4 abc | 37.2 e | 36.6 c | 37.2 d |
DIC3 | 41.2 ef | 23.5 b | 65.7 c | 12.1 a | 15.1 b | 12.2 a |
DIC4 | 5.6 ab | 6.2 ab | 61.0abc | 25.6 d | 44.3 e | 25.4 c |
DIC5 | 48.0 ef | 28.2 b | 32.5 abc | 92.7 h | 71.4 g | 92.8 g |
DIC6 | 23.9 cd | 19.0ab | 28.8 abc | 92.4 h | 77.4 i | 92.4 g |
DIC7 | 48.6 f | 17.4 b | 13.1 a | 23.1 c | 39.3 d | 22.2 b |
DIC8 | 14.0 abc | 7.1 ab | 63.7 bc | 62.3 g | 74.5 h | 62.4 f |
DIC9 | 34.1 de | 13.5 ab | 64.8 bc | 62.4 g | 75.9 hi | 62.3 f |
DIC10 | 20.2 abc | 16.3 ab | 67.4 bc | 22.9 c | 39.4 d | 22.5 bc |
DIC11 | 15.8 abc | 10.2 ab | 8.7 a | 53.5 f | 40.5 d | 13.3 a |
DIC12 | 3.1 a | −4.0a | 15.5 ab | 14.6 b | 12.3 a | 53.9 e |
DIC13 | 22.8 cd | 17.2 ab | 64.4 bc | 22.3 c | 62.9 f | 22.4 bc |
Sample | Total Phenolics Reduction (%) | Tannins Reduction (%) | Flavonoids Reduction (%) | Phytates Reduction (%) | Raffinose Reduction (%) | Stachyose Reduction (%) |
---|---|---|---|---|---|---|
C45 | 30.8 a | 13.2 a | 29.4 b | 87.8 b | 91.3 b | 87.7 b |
C60 | 39.5 a | 17.7 a | 51.2 a | 95.9 a | 93.8 a | 95.8 a |
C90 | –10.9 b | 18.5 a | 48.8 a | 95.6 a | 94.2 a | 95.7 a |
C120 | 9.5 c | 20.3 a | 47.1 a | 95.3 a | 96.1 c | 95.0 c |
NNF | Reduction (%) | Increase (%) |
---|---|---|
Total phenolics | - | 28.6 ± 3.1 |
Flavonoids | - | 27.2 ± 2.8 |
Condensed Tannins | - | 4.4 ± 0.0 |
IP6 | 95.8 ± 0.2 | - |
Raffinose | 96.1 ± 0.6 | - |
Stachyose | 95.9 ± 0.0 | - |
Sample | Saturated Steam Pressure (MPa) | Treatment Time (s) |
---|---|---|
DIC1 | 0.33 | 195 |
DIC2 | 0.45 | 195 |
DIC3 | 0.33 | 360 |
DIC4 | 0.33 | 195 |
DIC5 | 0.41 | 312 |
DIC6 | 0.41 | 78 |
DIC7 | 0.33 | 195 |
DIC8 | 0.24 | 78 |
DIC9 | 0.24 | 312 |
DIC10 | 0.33 | 195 |
DIC11 | 0.20 | 195 |
DIC12 | 0.33 | 30 |
DIC13 | 0.33 | 195 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Aguirre, A.I.; Téllez-Pérez, C.; San Martín-Azócar, A.; Cardador-Martínez, A. Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch (Vicia sativa spp.). Molecules 2020, 25, 151. https://doi.org/10.3390/molecules25010151
Hernandez-Aguirre AI, Téllez-Pérez C, San Martín-Azócar A, Cardador-Martínez A. Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch (Vicia sativa spp.). Molecules. 2020; 25(1):151. https://doi.org/10.3390/molecules25010151
Chicago/Turabian StyleHernandez-Aguirre, Angel I., Carmen Téllez-Pérez, Alejandra San Martín-Azócar, and Anaberta Cardador-Martínez. 2020. "Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch (Vicia sativa spp.)" Molecules 25, no. 1: 151. https://doi.org/10.3390/molecules25010151
APA StyleHernandez-Aguirre, A. I., Téllez-Pérez, C., San Martín-Azócar, A., & Cardador-Martínez, A. (2020). Effect of Instant Controlled Pressure-Drop (DIC), Cooking and Germination on Non-Nutritional Factors of Common Vetch (Vicia sativa spp.). Molecules, 25(1), 151. https://doi.org/10.3390/molecules25010151